
Tivoli® Composite Application Manager for Transactions

Transaction Tracking API User’s Guide

Version 7.1

for AIX, Linux, Solaris, Windows, and z/OS

SC23-9755-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 71.

This edition applies to version 7, release 1 of IBM Tivoli Composite Application Manager for Transactions (product

number 5724-S79) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

Tables vii

About this publication ix

Publications ix

Documentation library ix

Prerequisite publications x

Accessing terminology online x

Accessing publications online x

Ordering publications x

Accessibility xi

Tivoli technical training xi

Support information xi

Conventions used in this guide xi

Typeface conventions xi

Operating system-dependent variables and paths xii

Chapter 1. Introduction 1

Chapter 2. Before you start 3

Chapter 3. Preparing your environment 5

Chapter 4. Getting started 7

Introduction 7

Program requirements and include files 8

Compiling, linking, and executing with Transaction

Tracking API 8

Error handling 10

Error logging and debugging 10

Chapter 5. How to build an event . . . 13

Event types 13

Event type examples 15

Linking and stitching 15

Transaction Instance IDs 18

Context information 19

Blocking events 21

Example: blocking events 21

Platform specific issues 22

Chapter 6. High Level Language

reference 23

Functions 23

C types and structures 27

Chapter 7. Java reference 33

Chapter 8. High Level Assembler

Reference 35

HLASM Macro: CYTADFV 35

HLASM Macro: CYTAINIT 37

HLASM Macro: CYTANV 38

HLASM Macro: CYTATOK 39

HLASM Macro: CYTATRAK 40

Appendix A. Transport address format 45

Appendix B. Return codes 47

Appendix C. Samples 49

Appendix D. kto_stitching file 63

Appendix E. Transaction Collector

Context Mask 67

Appendix F. Accessibility 69

Notices 71

Trademarks 73

Glossary 75

Index 83

© Copyright IBM Corp. 2008 iii

iv IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Figures

1. Synchronous transaction 15

2. Contextual information in a transaction 20

3. Partially asynchronous transaction 22

4. Transaction Collector Configuration dialog box 68

© Copyright IBM Corp. 2008 v

vi IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Tables

1. Transaction Tracking API support 3

2. Logging configuration environment variables 10

3. Event components 13

4. Event types 14

5. Samples in the SCYTSAMP library 49

6. Field matching 64

© Copyright IBM Corp. 2008 vii

viii IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

About this publication

This guide provides information about instrumenting applications to provide

tracking information for ITCAM for Transaction Tracking.

Intended audience

This guide is for system administrators who enable applications to send events to

ITCAM for Transaction Tracking.

Use the information in the IBM® Tivoli® Composite Application Manager for

Transactions User’s Guide and Administrator’s Guide together with the IBM Tivoli

Monitoring User’s Guide to monitor and manage the performance of your systems.

Publications

This section lists publications relevant to the use of the IBM Tivoli Composite

Application Manager for Transactions. It also describes how to access Tivoli

publications online and how to order Tivoli publications.

Documentation library

The following documents are available in the IBM Tivoli Composite Application

Manager for Transactions library:

v IBM Tivoli Composite Application Manager for Transactions Administrator’s Guide

This guide provides information about configuring elements of IBM Tivoli

Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Installation and

Configuration Guide

This guide provides information about installing and configuring elements of

IBM Tivoli Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Quick Start Guide

This guide provides a brief overview of IBM Tivoli Composite Application

Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Troubleshooting Guide

This guide provides information about using all elements of IBM Tivoli

Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Transaction Tracking API

User’s Guide

This guide provides information about the Transaction Tracking API.

v IBM Tivoli Composite Application Manager for Transactions User’s Guide

This guide provides information about the GUI for all elements of IBM Tivoli

Composite Application Manager for Transactions.

v IBM Tivoli Composite Application Manager for Transactions Installation and

Configuration Guide for z/OS

This guide provides information about using IBM Tivoli Composite Application

Manager for Transactions on z/OS.

© Copyright IBM Corp. 2008 ix

Prerequisite publications

To use the information in this guide effectively, you must have some knowledge of

IBM Tivoli Monitoring products that you can obtain from the following

documentation:

v IBM Tivoli Monitoring Administrator’s Guide, version 6.2 Fix Pack 1

v IBM Tivoli Monitoring Installation and Setup Guide, version 6.2 Fix Pack 1

v IBM Tivoli Monitoring User’s Guide, version 6.2 Fix Pack 1

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available at the following

Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product

libraries in one convenient location. You can access the Terminology Web site at the

following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become

available and whenever they are updated, to the Tivoli software information center

Web site.

Access the Tivoli software information center by going to the Tivoli software

library at the following Web address:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli

publications. To locate the telephone number of your local representative:

1. Go to http://www.ibm.com/planetwide/

2. In the alphabetical list, select the letter for your country and then click the

name of your country. A list of numbers for your local representatives is

displayed.

x IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/planetwide/

Accessibility

Accessibility features help users with a physical disability, such as restricted

mobility or limited vision, to use software products. With this product, you can use

assistive technologies to hear and navigate the interface. You can also use the

keyboard instead of the mouse to operate most features of the graphical user

interface.

For additional information, see Accessibility Appendix F, “Accessibility,” on page

69.

Tivoli technical training

For information about Tivoli technical training, refer to the following IBM Tivoli

Education Web site:

http://www.ibm.com/software/tivoli/education

Support information

If you have a problem with your IBM software, you want to resolve it quickly.

IBM provides the following ways for you to obtain the support you need:

Online

Go to the IBM Software Support site at http://www.ibm.com/software/support/
probsub.html and follow the instructions.

IBM Support Assistant

The IBM Support Assistant (ISA) is a free local software serviceability workbench

that helps you resolve questions and problems with IBM software products. The

ISA provides quick access to support-related information and serviceability tools

for problem determination. To install the ISA software, go to http://
www.ibm.com/software/support/isa.

Conventions used in this guide

This guide uses several conventions for operating system-dependent commands

and paths, special terms, actions, and user interface controls.

Typeface conventions

This guide uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise

difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin

buttons, fields, folders, icons, list boxes, items inside list boxes,

multicolumn lists, containers, menu choices, menu names, tabs, property

sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

About this publication xi

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa
http://www.ibm.com/software/support/isa

v Words defined in text

v Emphasis of words

v New terms in text (except in a definition list)

v Variables and values you must provide

Monospace

v Examples and code examples

v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text

v Message text and prompts addressed to the user

v Text that the user must type

v Values for arguments or command options

Operating system-dependent variables and paths

This guide uses the UNIX® system convention for specifying environment variables

and for directory notation.

When using the Windows® command line, replace $variable with %variable% for

environment variables and replace each forward slash (/) with a backslash (\) in

directory paths. The names of environment variables are not always the same in

the Windows and UNIX environments. For example, %TEMP% in Windows

environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX

conventions.

xii IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 1. Introduction

ITCAM for Transaction Tracking is a solution for tracking transactions across

applications and networks. It provides an upgrade path from ITCAM for Response

Time Tracking, and consolidates domain-specific tracking technologies.

ITCAM for Transaction Tracking tracks applications by accepting information from

applications, monitoring software and other sources that specify a point in the life

of an application. Each piece of information is an event. ITCAM for Transaction

Tracking Data collectors such as ITCAM for MQ Tracking automatically send these

events to ITCAM for Transaction Tracking.

The Transaction Tracking Application Programming Interface (Transaction Tracking

API), provides developers with a means of sending their own events and

providing tracking information to ITCAM for Transaction Tracking 7.1. This allows

developers to enhance tracking beyond that provided by Transactions Data

Collectors.

This guide describes how to use the Transaction Tracking API. It describes how to

construct events and how to send these events to Transactions for processing.

© Copyright IBM Corp. 2008 1

2 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 2. Before you start

Transaction Tracking API is supported on a range of operating systems and

architectures. It supports a number of programming languages.

Platform support

Table 1 lists the supported operating systems and hardware architectures on which

you can use Transaction Tracking API.

 Table 1. Transaction Tracking API support

Operating system Architecture

AIX® 5.3 iSeries® / pSeries®

AIX 5L™ 5.4 iSeries / System p™

Novell Linux® Desktop 9 x86 32-bit 64-bit

Red Hat Desktop 4.0 x86 32-bit 64-bit

Red Hat Desktop 5.0 x86 32-bit 64-bit

RHEL 4 x86 32-bit 64-bit

RHEL 5 x86 32-bit 64-bit

SLED 10 x86 32-bit 64-bit

Solaris 9 SPARC

Solaris 10 SPARC

SUSE (SLES) 9.0 x86 32-bit 64-bit

SUSE (SLES) 10.0 x86 32-bit 64-bit

Windows Longhorn Standard Edition x86 32-bit 64-bit

Windows Longhorn Datacenter Edition x86 32-bit 64-bit

Windows Longhorn Enterprise Edition x86 32-bit 64-bit

Windows Server 2003 Enterprise Edition x86 32-bit

IBM z/OS® IBM z/Series

Supported programming languages

The Transaction Tracking API supports the following programming languages:

v C

v C++

v Enterprise COBOL (z/OS only)

v Enterprise PL/I (z/OS only)

v IBM High Level Assembler (HLASM - z/OS only)

v Java™ 1.4 and 1.5

The following program environments are supported on z/OS:

v C, C++ and Java applications running in 64 bit mode on z/OS

v C and C++ XPLINK and non-XPLINK programs on z/OS

© Copyright IBM Corp. 2008 3

v C and C++ programs statically and dynamically linking Transaction Tracking

API

v COBOL and PL/I programs statically linking Transaction Tracking API

4 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 3. Preparing your environment

The way in which you prepare your environment is dependent on whether it is a

distributed or z/OS environment.

Distributed environments

You may unpack the Transaction Tracking API Software Development Kit

(Transaction Tracking API SDK) anywhere on your system. Depending on the

target platform, the Transaction Tracking API SDK is packaged as a single zip or tar

archive. This archive contains everything required to instrument an application.

However, it does not include any other related components, such as the

Transaction Collector.

The files contained in the Transaction Tracking API SDK are:

include/

 ttapi.h

lib/

 ttapi4j.jar

 ttapi.lib, ttapi.dll, pthread.dll (Windows)

 libttapi.so (UNIX - suffixes vary by platform)

 kbb.dll on Windows

 libkbb.so on UNIX

z/OS environments

For z/OS systems, the Transaction Tracking API SDK is installed as part of the

Transactions Base install. However:

v C programmers on UNIX Systems Services (USS) may wish to copy the

SCYTSAMP member CYTAPI to a USS directory of their choice, renaming it to

cytapi.h. This file holds all C and C++ includes necessary to use the Transaction

Tracking API.

v Java programmers must ensure that the Transactions JAR files are in the Java

classpath, and external links to the Transactions JNI modules are in the Java

libpath. See the IBM Tivoli Composite Application Manager for Transactions

Installation and Configuration Guide for more information.

© Copyright IBM Corp. 2008 5

6 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 4. Getting started

Use this information to help you create and send events.

Introduction

To send a transactions event you must complete these steps.

1. Initialize Transaction Tracking API using the init function.

2. Construct the event.

3. Send the event using the track function.

4. Shut down the Transaction Tracking API using the shutdown function.

Initialize Transaction Tracking API

The init function only needs to be called once per process. This function sets up

the Transaction Tracking API environment, and populates the Configuration Block

with information required by all other Transaction Tracking API functions. The

Configuration Block must not be changed once init has been called. init must be

called before any other Transaction Tracking API function. However,

TT_check_version should be called before init, otherwise it has no effect.

Callers of the init function must allocate an area for the Configuration Block, and

populate the servername field – the destination where events are to be sent. This

must be in the format specified in Appendix A, “Transport address format,” on

page 45.

Java callers use the ServerFactory.getServer class, however this performs the

same functions as the init function. Non-z/OS C and C++ users may choose to

use the check_version function to check the header versions.

Create the event

An event block must be allocated and completed by the caller. Chapter 5, “How to

build an event,” on page 13 describes the event format in detail, and shows how to

code an event block.

Java users construct events by calling the createEvent method of a ttapi4j.Server

object.

Send the event

The track function (native) and ttapi4j.Server.track method (Java) are used to

send the event. Note that calling track does not modify the contents of the event

constructed. Users calling track multiple times do not have to recreate the entire

event, but can reuse the existing event – replacing only the individual fields

required.

Shutdown the Transaction Tracking API

The Transaction Tracking API should be shutdown when it is no longer needed to

track events.

© Copyright IBM Corp. 2008 7

Java users should invoke the close method of the Server object.

Note: The shutdown function is not required for z/OS.

Program requirements and include files

Before using the Transaction Tracking API, you must first provide standard

preamble statements and include files in your code.

C/C++

You must include the Transaction Tracking API include file. For example:

#include <ttapi.h>

For z/OS users:

#include <cytapi.h>

COBOL

You must copy the CYTABCON constants copybook into the Data-Division of your

Working Storage Section. For example:

 DATA DIVISION.

 Working-Storage Section.

 COPY CYTABCON.

PL/I

You must include the supplied event block structure. For example:

%include CYTAPEVT;

Compiling, linking, and executing with Transaction Tracking API

Compiling

C/C++

To compile C or C++ programs against the Transaction Tracking API library, add

the include directory found in the Transaction Tracking API SDK or SCYTSAMP

dataset to the compiler’s preprocessor include path.

For example, if compiling with Microsoft® Visual C 7.1 and the SDK is installed in

C:\TTAPI:

cl /I C:\TTAPI\include <custom-flags> /c <source-filename>

Java

To compile a Java program, ensure that the Transactions cytapi4j.jar (z/OS) or

ttapi4j.jar (non-z/OS platforms) JAR file is in the Java classpath. This can be

achieved by adding the file’s absolute path to the CLASSPATH environment variable,

or by specifying it on the command line using the -classpath flag.

COBOL and PL/I

To compile COBOL or PL/I programs, ensure the SCYTSAMP library is in the

compiler’s SYSLIB DD concatenation.

8 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

High Level Assembler

To assemble HLASM programs, ensure the SCYTSAMP library is in the

assembler’s SYSLIB DD concatenation.

Linking on distributed platforms

To link the resultant objects into an application, link against the libttapi library

provided with the Transaction Tracking API SDK. For example, if linking with

Microsoft Visual C 7.1 and the SDK is installed in C:\TTAPI:

link /libpath: C:\TTAPI\lib <custom-flags> <object-files> ttapi.lib

Binding on z/OS

The Transaction Tracking API programs are stored as DLLs in the SCYTLOAD

library. When binding programs with Transaction Tracking API on z/OS:

v If a C or C++ program is dynamically calling Transaction Tracking API:

– If compiling in batch, include the SCYTSAMP member CYTASIDE in the

SYSLIN DD.

– If compiling in UNIX Systems Services, copy the SCYTSAMP member

CYTASIDE to an HFS directory, renaming it to cytaside.x. Include cytaside.x

when binding your program. For example: c89 –W’l,dll’ pgm1.o cytaside.x

v Otherwise ensure the SCYTLOAD library is included in the binder search path.

For example, adding SCYTLOAD to the binder SYSLIB DD if binding in batch.

Running with Transaction Tracking API

C/C++

If running on distributed (non-z/OS) platforms, ensure the lib directory of the

Transaction Tracking API SDK is included in the runtime library search path.

For example, on Linux you must modify the LD_LIBRARY_PATH environment

variable to include the directory.

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist

concatenation, and that external links to the Transactions JNI modules are defined

in the Java libpath. See IBM Tivoli Composite Application Manager for Transactions

Installation and Configuration Guide for more information.

COBOL and PL/I

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist

concatenation.

Java

If running on distributed (non-z/OS) platforms, ensure the lib directory of the

Transaction Tracking API SDK is included in the runtime library search path.

For example, on Linux you must modify the LD_LIBRARY_PATH environment

variable to include the directory.

If running on z/OS, ensure the SCYTLOAD library is in the z/OS linklist

concatenation.

Chapter 4. Getting started 9

In both cases, ensure the cytapi4j.jar (z/OS) or ttapi4j.jar (non-z/OS) JAR files are

in the Java classpath.

Error handling

Transaction Tracking API functions that fail return an error code, which must be

checked to determine whether the Transaction Tracking API function has

succeeded.

If a function succeeds it returns TT_SUCCESS (zero). If it fails, it returns a non-zero

error code, as described Appendix B, “Return codes,” on page 47. Additionally,

Transaction Tracking API provides logging facilities to further isolate the problem.

For normal operation, this logging is disabled.

Invalid events

The track function validates all events and returns a code, as described in

Appendix B, “Return codes,” on page 47, which specifies in detail the invalid field

or value.

Undefined behavior

There are certain error conditions that the Transaction Tracking API cannot detect.

For example:

v Passing one Configuration Blocks to init, and a different block to other

functions.

v Modifying the Configuration Block after init has been called.

v Incorrect length value specified.

v Configuration Block, event or name/value pairs not initialized to nulls before

use.

In the preceding cases, Transaction Tracking API processing is unpredictable.

Error logging and debugging

In addition to returning error codes from Transaction Tracking API functions,

Transaction Tracking API logs error and debug messages at significant points in the

process of initializing, shutting down, sending events to a Transaction Collector,

and various states in between. In general, this logging will not be of interest to

users - it will usually be turned on to provide support professionals with enough

information to help isolate an error or misuse of the API.

On platforms other than z/OS, Transaction Tracking API uses the IBM Tivoli

Monitoring standard RAS1 logging. On z/OS, log information is written to standard

output. You can control the amount of logging produced by the RAS1 logger by

configuring the environment variables listed in Table 2.

 Table 2. Logging configuration environment variables

Environment variable Description

KBB_RAS1=ALL Enable logging of all messages.

KBB_RAS1=ERROR Enable logging of error messages.

KBB_RAS1= Disable all message logging. This is the default.

KBB_RAS1_LOG= Log to standard output.

10 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Table 2. Logging configuration environment variables (continued)

Environment variable Description

KBB_RAS1_LOG=... Set the log file name and other parameters. See the format

example that follows this table..

KBB_VARPREFIX=% Set the prefix for variables specified in KBB_RAS1_LOG.

KBB_RAS1_LOG has the following format:

KBB_RAS1_LOG=filename [INVENTORY=inventory_filename]

 [COUNT=count]

 [LIMIT=limit]

 [PRESERVE=preserve]

 [MAXFILES=maxfiles]

The settings for KBB_RAS1_LOG are:

count Maximum number of log files to create in one invocation of the

application.

inventory_filename

A file in which to record the history of log files across invocations of the

application.

limit Maximum size per log file.

maxfiles

Maximum number of log files to create in any number of invocations of

the application. This value takes effect only when inventory is specified.

preserve

Number of log files to preserve when log files wrap over count.

Chapter 4. Getting started 11

12 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 5. How to build an event

Instrumenting an application requires you to create events that indicate the flow of

a transaction.

The Transaction Tracking API comes in multiple forms:

v High Level Language (HLL) package – for C, C++, COBOL and PL/I programs.

See “C types and structures” on page 27 for information specific to

instrumenting C/C++ applications.

v TTAPI4J – wrapper for Java applications.

See Chapter 7, “Java reference,” on page 33 for information specific to

instrumenting Java applications.

v z/OS macros for HLASM callers.

See Chapter 8, “High Level Assembler Reference,” on page 35.

Detailed information on each of these forms is given in the appropriate reference

chapter. Complete examples for all languages are provided in the Appendixes.

Transaction Tracking API events contain the major components described in

Table 3.

 Table 3. Event components

Component Description

Event type The type of the event, for example outbound or inbound.

Instance ID Information specific to the event’s enclosing transaction

instance.

Horizontal ID Information used to correlate events, where the events occur

in separate processes, potentially on separate machines.

Vertical ID Information used to correlate events, where the events occur

in the same process.

Horizontal context Information used to aggregate events across processes.

Vertical context Information used to aggregate events within a process.

Blocked Status An attribute that indicates whether or not an event is related

to a synchronous interaction in its transaction.

These components are described in detail in the following sections.

Event types

Every event sent by Transaction Tracking API has an associated type that is used in

event correlation.

© Copyright IBM Corp. 2008 13

The event types are described in Table 4.

 Table 4. Event types

Event type Description

STARTED The beginning of a transaction. No events in a transaction may

come before STARTED. The STARTED event type is used as the

lower bound by the correlation system when searching for

related events.

FINISHED The end of a transaction. No events in a transaction may come

after FINISHED. The FINISHED event type is used as the upper

bound by the correlation system when searching for related

events.

INBOUND A message has been received. These events are typically used to

correlate cross-process interactions.

OUTBOUND A message has been sent. These events are typically used to

correlate cross-process interactions.

HERE Usually indicates the blocking or unblocking of an asynchronous

transaction. May also be used in situations where there is not

enough context to determine whether an event is the result of an

outgoing or incoming message.

STARTED_INBOUND Combination of STARTED and INBOUND events used to reduce

the number of events produced. STARTED_INBOUND events

are used both as a STARTED lower bound, and for INBOUND

correlation.

OUTBOUND_FINISHED Combination of OUTBOUND and FINISHED events used to

reduce the number of events produced. OUTBOUND_FINISHED

events are used both as a FINISHED upper bound, and for

OUTBOUND correlation.

INBOUND_FINISHED Combination of INBOUND and FINISHED events used to

reduce the number of events produced. INBOUND_FINISHED

events are used both as a FINISHED upper bound, and for

INBOUND correlation.

The event is set in the event block Type field. For example:

Java

event.setType(Event.Type.OUTBOUND);

C/C++

event.type = TT_OUTBOUND_EVENT;

COBOL

MOVE CYTA-STARTED TO CYTA-E-TYPE.

PL/I

cytaetyp = cytaesta;

HLASM

CYTATRAK STARTED,

14 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Event type examples

The Transaction Tracking API can be used to track both synchronous and

asynchronous transactions.

Synchronous transactions

The simple example shown in Figure 1 demonstrates event type usage in a client

application making a synchronous request to a server application.

The dashed line in Figure 1 illustrates the flow of the transaction from start to

finish.

Transactions typically start with a STARTED event, unless the transaction is known

to have started as the result of an inbound message, in which case a

STARTED_INBOUND event type is used. In the example, the overall transaction begins

with a STARTED event, and the subtransaction in the server process begins with a

STARTED_INBOUND.

Transactions typically terminate with an INBOUND_FINISHED or OUTBOUND_FINISHED

event, because a transaction usually terminates upon receipt of a reply to a prior

request. If the transaction terminates because of some other condition, for example

if the request from the client to the server times out, indicate this with a FINISHED

event.

Asynchronous transactions

See “Blocking events” on page 21 for an example of event-type usage in

asynchronous transactions.

Linking and stitching

One of the most important elements of the Transaction Tracking API event is the

association ID, which is composed of linking and stitching IDs. Linking and

stitching IDs are used to determine the relationships between events.

For example, if an outbound and an inbound event are related to a particular

interprocess interaction, then they must both contain some identical information so

that they can be matched against each other. Each event may have either or both

Figure 1. Synchronous transaction

Chapter 5. How to build an event 15

horizontal and vertical association IDs. Typically, the horizontal ID correlates events

across processes, and the vertical ID correlate events within a single process.

Note: The term technology domain is introduced in this section. This term refers to a

(potential) Transaction Tracking API event source, such as ARM, MQ, ITCAM for

SOA, or a custom application. Each domain is expected to provide enough

information to correlate Transaction Tracking API events.

Linking and stitching IDs

Linking IDs identify interactions within a single technology domain. For example,

where a domain, such as ARM, tracks transactions by passing tokens along, that

token, or some part of it, might be used as the linking ID. The linking ID will not

match any other domain, but it allows events within the ARM domain to be

correlated. You must provide Transaction Tracking API with one and only one

linking ID.

Stitching IDs identify interactions between technology domains, both within and

across processes. In-process interactions occur only if there are two sources of

tracking information within that process. If a process lies at the edge of two

technology domains, for example ARM and MQ, then it is possible that the process

will produce events for both domains.

Linking and stitching IDs are opaque to the Transaction Tracking API; they carry

no special meaning, and have no particular formatting constraints beyond their

size limitations. The event correlation system performs a simple byte-array

comparison for equality.

Linking and stitching IDs must be globally unique for each interaction, from the

first STARTED event to the last FINISHED event.

Tip: You can improve the uniqueness of linking IDs in custom applications by

adding a prefix or suffix to all linking IDs generated by your application. In doing

this, you will achieve the same effect as setting the caller type to some value

unique to your application, provided that the prefix or suffix you choose is not

used by another application.

Stitching IDs

While Transaction Tracking API provides an interface for providing arbitrary

stitching IDs, they are useless if there is no commonality between each technology

domain. Horizontal stitching IDs generally must be provided on a pair-by-pair

basis - that is for each pair of technology domains. The developers instrumenting

these domains will have to communicate to determine common stitching IDs.

Transaction Tracking API events may contain multiple stitching IDs. For any two

events, if a stitching ID of one event is equal to the stitching ID with the same

name of the other event, then some interaction is assumed to have occurred

between the two events. The Transaction Collector kto_stitching.xml file defines

how this stitching occurs. See Appendix D, “kto_stitching file,” on page 63 for

further information on this file.

Vertical stitching can generally be accomplished by using the thread ID of the

thread in which the transaction event occurred. This enables the correlation system

to correlate events from one transaction that are interleaved with events from

another transaction in another thread. This depends on the structure of the

16 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

instrumented application, and on a single thread being used to service a

transaction.

Link types

All links must have a type (CALL TYPE ID) that is an integer value and can be

any number 0 to 255. Events have a default caller type of ANY - this caller type

will only be matched against other events with the ANY caller type, and may be

used instead of a domain-specific caller type. However, use values from the range

200-255 rather than ANY.

Currently defined values are:

v 0 ANY

v 1 GPS

v 2 ARM

v 3 WSA

v 4 CICS Transaction Gateway

v 5 Websphere MQ

v 6 SOA

v 7 Web Resource

v 8 CICS

v 9 IMS

v 10-199 Reserved for IBM use

v 200-255 Available to users

Examples

Vertical linking

This example uses C/C++ to link events using the current thread ID:

 pthread_t current_thread;

 char thread_id[sizeof(pthread_t)];

 struct tt_event_t event;

 /* Set the event’s vertical link ID to the current thread ID. */

 current_thread = pthread_self();

 memcpy(thread_id, ¤t_thread, sizeof(pthread_t));

 event.vertical_id.link_id = thread_id;

 event.vertical_id.caller_type = TT_ARM_CALLER;

 event.vertical_id.link_id_size = sizeof(pthread_t);

Horizontal linking

This example uses C/C++ to link events using a token embedded in a message

sent by the instrumented application. Because both applications are members of

the same technology domain they are capable of communicating this way. That is,

the server knows how to decode the message so that it can extract the value of the

horizontal link ID:

 /* Create the token that will be sent with the message */

 uint16_t token_size = 0;

 char *token = create_token(&token_size);

 /* Set the event’s horizontal link ID to the message’s token value. */

 event.horizontal_id.link_id = token;

 event.horizontal_id.caller_type = TT_IMS_CALLER;

 event.horizontal_id.link_id_size = token_size;

Chapter 5. How to build an event 17

Stitching

Using horizontal and vertical stitching IDs is similar to using horizontal and

vertical linking IDs. Below are some simple examples of how to configure stitching

IDs.

Java:

 Event event = server.createEvent();

 event.getHorizontalID().getStitchingIDs().put("name", "value");

 event.getVerticalID().getStitchingIDs().put("name", "value");

C/C++:

 tt_event_t event;

 tt_values_list_t horizontal_stitching_ids;

 tt_values_list_t vertical_stitching_ids;

 horizontal_stitching_ids.name = "name";

 horizontal_stitching_ids.value = "value";

 horizontal_stitching_ids.size = sizeof("name") - 1;

 horizontal_stitching_ids.next = 0;

 event.horizontal_id.stitch_ids = &horizontal_stitching_ids;

 vertical_stitching_ids.name = "name";

 vertical_stitching_ids.value = "value";

 vertical_stitching_ids.size = sizeof("name") - 1;

 vertical_stitching_ids.next = 0;

 event.vertical_id.stitch_ids = &vertical_stitching_ids;

Transaction Instance IDs

Transaction Tracking API events have an optional instance ID.

The instance ID contains either or both of the following fields:

v Transaction ID

v Transaction Data

The transaction ID exists purely for assisting the event correlation system; it is an

identifier common to all (or a subset of) events belonging to an instance of a

transaction. Normally, the correlation system will have to iteratively build up a

transaction by following each linking and stitching ID. If a transaction ID is

specified, the correlation system can request all events with that ID up-front, thus

reducing the time to completion.

Events may also contain transaction data. Transaction data is data particular to an

instance of a transaction. It is only used for labeling in reports and graphs of

transactions. Only data that is particular to a instance of the transaction is

included, that is, data that is not aggregated, and is not used for linking and

stitching. The data is presented when the transaction instance is visualized. For

example, a web application might report the parameters of an HTTP request in

instance data, and the server and page part of the request in the aggregated data

(context).

Example: Java

Event event = server.createEvent();

event.getInstanceID().setTransactionID("SomeUniqueTransaction");

event.getInstanceID().getTransactionData.put("name", "value");

18 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Example: C/C++

tt_event_t event;

tt_values_list_t transaction_data;

transaction_data.name = "name";

transaction_data.value = "value";

transaction_data.size = sizeof("value") - 1;

transaction_data.next = 0;

event.instance_id.transaction_id = "SomeUniqueTransaction";

event.instance_id.size = sizeof("SomeUniqueTransaction") - 1;

event.instance_id.transaction_data = &transaction_data;

Context information

A typical environment monitored by ITCAM for Transaction Tracking produces

large amounts of tracking data. For this reason, ITCAM for Transaction Tracking

aggregates the tracking data. Timings and other statistics are aggregated by their

common contextual information.

Contextual information is also used for labeling nodes in the visualization of a

transaction, and for linking to domain-specific IBM Tivoli Monitoring applications.

Contextual information is information related to the circumstances in which the

transaction event occurred. For example, the name or address of the host on which

the event occurred, or the host that caused the event to occur. Similarly, the name

of the application from which the transaction originated or the application that is

presently processing the transaction are also contextual information. Such

information allows users to aggregate response times between hosts, between

applications, and so on. It is not, however, instance data, that is, it is not specific to

one event, but typically specific to a flow of events.

Contextual information is stored in two fields: the vertical context, and horizontal

context. Vertical context is intended to contain information about the transaction,

application or host where the event occurred. Horizontal context is intended to

contain information about the message or interaction between two applications or

hosts. For example, the vertical context might contain the host name of the

machine on which an event occurred, and the horizontal context might contain the

type of HTTP request that caused the event to occur.

For a transaction moving through a physical topology, an event’s vertical context

(for example, the hostname, physical location, application name) is used to label

the individual nodes (that is, the hosts) in the graph. An event’s horizontal context

(for example, the query type, message queue name) is used to label the edges

between those nodes.

Chapter 5. How to build an event 19

Similarly to creating stitching IDs, providing contextual information requires

cooperation between the programmers instrumenting the various applications. In

particular, the names of the items of information should match where transactions

should be grouped by that information. Names are case-sensitive, and aggregation

performs a binary equality comparison on them.

ITCAM for Transaction Tracking workspaces also depend on names to provide a

further hierarchy of information. The following four Vertical Contexts must be

included in every event sent:

ServerName

The server name or address of the machine on which the event occurred.

For example, win001.

 For z/OS users, this must be the Sysplex name and the z/OS host name

(SMF id), separated by a forward slash (/). For example, SYSPLEXQ/MVS1.

ComponentName

The name of the component in which the event occurred, For example

CICS®, Websphere Application Server, MQ: MQ.

ApplicationName

The name of the application in which the event occurred. For example, the

CICS region name or the MQ Queue Manager name: CICS001.

TransactionName

A common identifier for a group of transactions. If this is known by all

participants in the transaction, you can easily view aggregate information

for all events occurring within transactions of that group. For example,

TXN1.

The horizontal context distinguishes between interactions at an aggregate level,

which is of particular benefit when a mesh of interactions occurs. ITCAM for

Transaction Tracking workspaces do not currently display this information, but the

interaction data presented is more accurate when provided. Some suggestions for

common contextual information to include in events are:

Figure 2. Contextual information in a transaction

20 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Resource

For applications that query some resource in an external application, such

as a message queue or database table, the name of that resource. For

example, the queue name or database table name.

SourceHost

The host name of the source of the interaction.

DestinationHost

The host name of the destination of the interaction.

 The contexts that the Transaction Collector should aggregate are specified in the

Context Mask file. See Appendix E, “Transaction Collector Context Mask,” on page

67 for more information on this file.

Blocking events

Blocking events indicate the start of a transaction that causes an application or

process to wait for a response.

Transaction Tracking API allows you to provide enough information when creating

an event so that the correlation system can determine whether or not the event is

part of a synchronous transaction. This can help the system when it calculates the

System Time metric of an interaction. A description of the metrics produced by the

correlation system is outside the scope of this document.

Specify events as blocked if and only if they are related to the start of a transaction

that will cause the code to wait for a response, which is referred to as a

synchronous transaction. Note that blocking can still occur in an asynchronous

transaction; for example, an asynchronous transaction may synchronize at some

point, leading to a blocking event being generated.

Java

event.setBlocked(true);

C/C++

event.blocked = 1;

Example: blocking events

This example shows how to instrument a partially asynchronous transaction.

In the transaction example shown in Figure 3 on page 22, the client application

makes a nonblocking request to the server application, and then continues to

perform some computation. When it is ready to block while waiting for the

response, it sends a HERE event with the blocked flag set. This indicates that a

previously asynchronous transaction has become synchronous. The HERE event type

indicates that an event occurs after a transaction starts and before the transaction

ends, but is not necessarily related to an interaction between applications.

Chapter 5. How to build an event 21

Platform specific issues

Applications on z/OS send event data using EBCDIC with the exception of Java

applications.

By default, ITCAM for Transaction Tracking translates all event data from EBCDIC

to ASCII. However if some data supplied is binary or ASCII data, this translation

must be avoided. The Transaction Tracking API structure includes flags that can be

set to stop this translation. See the SCYTSAMP dataset for examples.

Client Server

STARTED

Blocked
waiting for
response.

Unblocked
continuing
processing
until response
received.

STARTED_INBOUND

OUTBOUND_FINISHED

OUTBOUND
Unblocked

HERE
Blocked

INBOUND_FINISHED
Blocked

Figure 3. Partially asynchronous transaction

22 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 6. High Level Language reference

This section is for COBOL, C, C++ and PL/I High Level Languages. Transaction

Tracking API function names all begin with cyta for z/OS, and tt for non-z/OS

platforms (although cyta can also be used).

Functions

Descriptions of ITCAM for Transaction Tracking functions callable from High Level

Languages.

Function: check_version

 Name: CYTA_check_version (z/OS and non-z/OS); TT_check_version

(non-z/OS)

 Purpose: Checks that the header being compiled against matches the library

being linked against.

 Parameters required: None.

 Return codes: See Appendix B, “Return codes,” on page 47.

 C definition: int CYTA_check_version(void);

Notes:

v Call CYTA_check_version before any other Transaction Tracking API function,

including CYTA_init.

v Not available on z/OS.

v Not required, however it can assist developers in cases where structures defined

in an older header do not line up with what is expected by a newer library.

Examples:

C:

#include <cytapi.h>

rc = CYTA_check_version();

Function: init

 Name: CYTA_init (z/OS and non-z/OS); TT_init (non-z/OS)

 Purpose: InitializeTransaction Tracking API for High Level Language Callers.

 Parameters required: Configuration Block with valid server as described in

Appendix A, “Transport address format,” on page 45.

 Return codes: See Appendix B, “Return codes,” on page 47.

 C Definition: int CYTA_init(cyta_config_t *config);

Notes:

v After init has been called, the Configuration Block must not be modified

v Callers must first initialize the Configuration Block to zeroes.

v If the server field is set to none, the default server will be used. See Appendix A,

“Transport address format,” on page 45 for further information.

© Copyright IBM Corp. 2008 23

v Two separate Transaction Tracking API configurations cannot exist within the

same process. The Transaction Tracking API may communicate with only one

Transaction Collector which receives all generated events. This is not applicable

to z/OS.

Examples:

C:

 #include <cytapi.h>

 cyta_config_t configblk;

 memset(&configblk, 0, sizeof(config));

 configblk.server = “tcp:svr.mycompany.com:5455”;

 rc = CYTA_init(&configblk); /* Config token in configblk*/

COBOL:

 DATA DIVISION.

 Working-Storage Section.

 COPY CYTABCON.

 COPY CYTABCFG.

 01 SERVER pic x(8) value ‘SSN:CYTZ’;

 01 RC pic S(9) comp.

 PROCEDURE DIVISION.

 SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.

 CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.

PL/I:

 %include CYTAPEVT; /* Area to hold event blk */

 %include CYTAPCFG; /* Area to hold Config Blk */

 Dcl server Char(8) Init("SSN:CYTZ");

 Dcl stgarea Area; /* stgarea is 1000 bytes */

 Allocate cytacfg In(stgarea);

 cytacsrv = Addr(server); /* Set Container subsystem */

 Call CYTA_init(cytacfg); /* Config token in cytacfg */

Function: shutdown

 Name: CYTA_shutdown (z/OS and non-z/OS); TT_shutdown (non-z/OS)

 Purpose: Shut down Transaction Tracking API. For z/OS, this function is not

required, and is included for compatibility with other platforms only.

 Parameters required: Configuration Block initialized with CYTA_init.

 Return codes: See Appendix B, “Return codes,” on page 47.

 C Definition: int CYTA_shutdown(cyta_config_t *config);

Example:

C:

 #include <cytapi.h>

 int rc;

 cyta_config_t configblk;

 cyta_event_t eventblk;

 memset(&configblk, 0, sizeof(configblk));

 memset(&eventblk, 0, sizeof(eventblk));

 configblk.server = “tcp:svr.mycompany.com:5455”;

 rc = CYTA_init(&configblk);

 /* code here to populate event block */

 rc = CYTA_track(&configblk, &eventblk);

 rc = CYTA_shutdown(&configblk);

24 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Function: strerror

 Name: CYTA_strerror (z/OS and non-z/OS); TT_strerror (non-z/OS)

 Purpose: Return a string describing a return code from a Transaction Tracking

API function.

 Parameters required: Return code from a Transaction Tracking API function.

 Output: String describing the error code.

 Return codes: None.

 C Definition: const char* CYTA_strerror(int errno);

Notes: Only available for C and C++.

Examples:

C:

 #include <cytapi.h>

 int rc;

 rc = CYTA_init(&configblk);

 if (rc > 0)

 printf(“Init error: %s\n”, CYTA_strerror(rc));

Function: time

 Name: CYTA_time (z/OS and non-z/OS); TT_time (non-z/OS)

 Purpose: Get time now in seconds and microseconds since 00:00:00, Jan 1, 1970.

 Parameters required: tt_time_t structure to receive time.

 Output: Current wall clock time returned in the tt_time_t structure.

 Return codes: None.

 C Definition: cyta_time_t* CYTA_time(cyta_time_t*);

 Notes: This function is only required if a timestamp different from the current

timestamp is required on an event. If the timestamp on an event sent to track is

zero, the current time is automatically inserted.

Examples:

C:

 #include <cytapi.h>

 int rc;

 cyta_time_t now;

 rc = tt_time_t;

COBOL:

 DATA DIVISION.

 Working-Storage Section.

 COPY CYTABEVT.

 01 RC pic S(9) comp.

 PROCEDURE DIVISION.

 CALL "CYTA_time" USING CYTA-E-SECONDS RETURNING RC.

PL/I:

 %include CYTAPEVT;

 Dcl stgarea Area; /* stgarea is 1000 bytes */

 Allocate cytacfg In(stgarea);

 Call CYTA_time(cytaesec);

Chapter 6. High Level Language reference 25

Function: token

 Name: CYTA_token (z/OS and non-z/OS); TT_token (non-z/OS)

 Purpose: Obtain a fullword token unique across the enterprise for High Level

Language Callers.

 Parameters required: Configuration Block initialized with CYTA_init.

 Output: Fullword unique token returned in area supplied.

 Return codes: See Appendix B, “Return codes,” on page 47.

 C Definition: int CYTA_token(cyta_config_t *config, cyta_int32_t *token);

Examples:

C:

 #include <cytapi.h>

 int rc;

 int token;

 cyta_config_t configblk;

 memset(&configblk, 0, sizeof(config));

 configblk.server = “tcp:svr.mycompany.com:5455”;

 rc = CYTA_init(&configblk);

 if (rc == TT_SUCCESS)

 rc = CYTA_token(&configblk, &token);

COBOL:

 DATA DIVISION.

 Working-Storage Section.

 COPY CYTABCON.

 COPY CYTABCFG.

 01 SERVER pic x(8) value ‘SSN:CYTZ’;

 01 TOKEN pic S(9) comp.

 01 RC pic S(9) comp.

 PROCEDURE DIVISION.

 SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.

 CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.

 CALL “CYTA_token” USING CYTA-CFG-BLOCK TOKEN RETURNING RC.

PL/I:

 %include CYTAPEVT;

 %include CYTAPCFG;

 Dcl server Char(8) Init("SSN:CYTZ");

 Dcl token Fixed(32);

 Dcl stgarea Area; /* stgarea is 1000 bytes */

 Allocate cytacfg In(stgarea);

 cytacsrv = Addr(server);

 Call CYTA_init(cytacfg);

 Call CYTA_token(cytacfg,token);

Function: track

 Name: CYTA_track (z/OS and non-z/OS); TT_track (non-z/OS)

 Purpose: Send completed event for High Level Language Callers.

 Parameters required: Configuration Block initialized with CYTA_init.

Completed event block.

 Output: Event sent if valid and Transactions operational.

 Return codes: See Appendix B, “Return codes,” on page 47.

 C Definition: int CYTA_track(cyta_config_t *config, cyta_event_t *event);

Notes:

26 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

v If the time in the event block is zero, the current time is automatically inserted

for the event.

v The contents of the event block are unchanged by track. Hence the same event

block can be used for multiple track calls, with only the changed fields being

updated

Examples:

C:

 #include <cytapi.h>

 int rc;

 int token;

 cyta_config_t configblk;

 cyta_event_t eventblk;

 memset(&configblk, 0, sizeof(configblk));

 memset(&eventblk, 0, sizeof(eventblk));

 configblk.server = “tcp:svr.mycompany.com:5455”;

 rc = CYTA_init(&configblk);

 /* code here to populate event block */

 rc = CYTA_track(&configblk, &eventblk);

COBOL:

 DATA DIVISION.

 Working-Storage Section.

 COPY CYTABCON.

 COPY CYTABCFG.

 COPYT CYTABEVT.

 01 SERVER pic x(8) value ‘SSN:CYTZ’;

 01 TOKEN pic S(9) comp.

 01 RC pic S(9) comp.

 PROCEDURE DIVISION.

 SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.

 CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.

 * code here to populate event block

 CALL “CYTA_track” USING CYTA-CFG-BLOCK CYTA-EVENT RETURNING RC.

PL/I:

%include CYTAPEVT;

 %include CYTAPCFG;

 Dcl server Char(8) Init("SSN:CYTZ");

 Dcl token Fixed(32);

 Dcl stgarea Area; /* stgarea is 1000 bytes */

 Allocate cytacfg In(stgarea);

 cytacsrv = Addr(server);

 Call CYTA_init(cytacfg);

 /* code here to populate event block */

 Call CYTA_token(cytacfg,token);

C types and structures

Transaction Tracking API provides a set of publicly available data types and

structures. The ttapi.h (non-z/OS) and SCYTSAMP CYTAPI (z/OS) include files

define many C and C++ data structures that can be used throughout your

program. For z/OS, all data types begin with cyta, for non-z/OS users, they can

start with tt or cyta.

Basic data types

Transaction Tracking API defines common names for various basic data types:

Chapter 6. High Level Language reference 27

tt_uint64_t

Unsigned 64-bit integer. (cyta_uint64_t for z/OS)

tt_int64_t

Signed 32-bit integer. (cyta_int64_t for z/OS)

tt_uint32_t

Unsigned 32-bit integer. (cyta_uint32_t for z/OS)

tt_int32_t

Signed 32-bit integer. (cyta_int32_t for z/OS)

tt_uint16_t

Unsigned 16-bit integer. (cyta_uint16_t for z/OS)

tt_int16_t

Signed 16-bit integer. (cyta_int16_t for z/OS)

tt_uint8_t

Unsigned 8-bit integer. (cyta_uint8_t for z/OS)

tt_int8_t

Signed 8-bit integer. (cyta_int8_t for z/OS)

tt_byte_t

Indicates that a memory address is considered as opaque, and may contain

any 8–bit value. (cyta_byte_t for z/OS)

tt_config_t (cyta_config_t for z/OS)

Defines generic configuration parameters for Transaction Tracking API.

typedef struct TT_CONFIG_T

{

 const char* server;

 tt_uint32_t connect_timeout;

 tt_uint32_t connect_retries;

 tt_uint32_t connect_retry_interval;

 void* handle;

 const char* token_filename;

 tt_uint16_t queue_size;

} tt_config_t;

tt_config_t.server

The address of the Transaction Collector to send events to. The address

format is defined in Appendix A, “Transport address format,” on page 45.

If this field is set to zero, it is replaced with the default server.

tt_config_t.connect_timeout

Length of time (in seconds) to wait for a TCP/IP connection to the

Transaction Collector before timing out. Default is 30000 (30 seconds).

tt_config_t.connect_retries

Number of times to retry a failing TCP/IP connection. If set to zero,

ITCAM for Transaction Tracking will retry indefinitely. .

tt_config_t.connect_retry_interval

Interval to wait before retrying TCP/IP connection. Default is 5000 (5

seconds).

tt_config_t.handle

Internal use only.

28 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

tt_config_t.token_filename

The filename of the token prefix file. This functionality is reserved for

future use.

tt_config_t.queue_size

Maximum number of events to queue while waiting for a TCP/IP

connection. Default is 1000. If more than 1000 events are received and there

is no TCP/IP connection to the Transaction Collector, the oldest event is

discarded.

Note: If you specify an incorrect transport address when the transport prefix does

not refer to an existing transport, such as tcp in tcp:127.0.0.1:5455, an error is

returned.

tt_time_t (cyta_time_t for z/OS)

Describes a point in time relative to the epoch, which is 00:00:00 UTC, January 1,

1970.Transaction Tracking API replaces instances of tt_time_t with both zero

seconds and zero microseconds with the current time.

typedef struct TT_TIME_T

{

 tt_uint32_t sec;

 tt_uint32_t usec;

} tt_time_t;

tt_time_t.sec

Seconds component

tt_time_t.usec

Microseconds component

tt_event_t (cyta_event_t for z/OS)

Decribes an event that has occurred in the instrumented application. For example,

the event may describe the beginning or completion of a transaction, or the

sending or receipt of a request or response.

typedef struct TT_EVENT_T

{

 tt_uint32_t type;

 tt_time_t timestamp;

 tt_instance_id_t instance_id;

 tt_association_id_t horizontal_id;

 tt_association_id_t vertical_id;

 tt_values_list_t* horizontal_context;

 tt_values_list_t* vertical_context;

 int blocked;

 void* reserved1;

} tt_event_t;

tt_event_t.type

The event type. For example, TT_STARTED_EVENT, or TT_OUTBOUND_EVENT.

tt_event_t.timestamp

The point in time at which the event occurred.

tt_event_t.instance_id

Transaction ID and instance-specific data.

tt_event_t.horizontal_id

Horizontal linking and stitching IDs.

Chapter 6. High Level Language reference 29

tt_event_t.vertical_id

Vertical linking and stitching IDs.

tt_event_t.horizontal_context

Horizontal context. A NULL-pointer is interpreted as an empty set.

tt_event_t.vertical_context

Vertical context. A NULL-pointer is interpreted as an empty set.

tt_event_t.blocked

Determines the blocked status of the event. Zero equates to unblocked,

while a non-zero value equates to blocked.

tt_event_t.reserved1

Reserved for future use.

tt_association_id_t (cyta_association_t for z/OS)

Defines the information that identifies associations between sets of events, that is,

the linking and stitching IDs.

typedef struct TT_ASSOCIATION_ID_T

{

 tt_uint32_t caller_type;

 const tt_byte_t* link_id;

 tt_uint8_t link_id_size;

 tt_uint16_t flags;

 tt_values_list_t* stitch_ids;

} tt_association_id_t;

tt_association_id_t.caller_type

Caller type for the link ID. This is used to eliminate collisions in link IDs

between different callers of Transaction Tracking API.

tt_association_id_t.link_id

Address of the link ID for this event.

tt_association_id_t.link_id_size

Size of the link ID, in 8-bit bytes.

tt_association_id_t.flags

Flags that affect how the association ID is interpreted by Transaction

Tracking API. For z/OS, CYTA_ASSOCIATION_FLAG_LINK_RAW (1) specifies

that the link_id field is binary or ASCII data, and is not to be translated

from EBCDIC to ASCII.

tt_association_id_t.stitch_ids

Stitching IDs. A NULL-pointer is interpreted as an empty set.

tt_instance_id_t (cyta_instance_id_t for z/OS)

Defines the information that identifies transaction-specific data.

typedef struct TT_INSTANCE_ID_T

{

 const tt_byte_t* transaction_id;

 tt_uint16_t size;

 tt_uint16_t flags;

 tt_values_list_t* transaction_data;

} tt_instance_id_t;

tt_instance_id_t.transaction_id

Address of the transaction ID for the event.

30 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

tt_instance_id_t.size

Size of the transaction ID for the event, in 8-bit bytes.

tt_instance_id_t.flags

Flags which affect how the instance ID is interpreted by Transaction

Tracking API. For z/OS, CYTA_INSTANCEID_FLAG_RAW (1) specifies that the

transaction_id field is binary or ASCII data, and is not to be translated

from EBCDIC to ASCII.

tt_instance_id_t.transaction_data

Transaction instance-specific data. A NULL pointer is interpreted as an

empty set.

tt_values_list_t (cyta_values_list_t for z/OS)

Defines a singly-linked list of name-value pairs.

typedef struct TT_VALUES_LIST_T

{

 struct TT_VALUES_LIST_T* next;

 const char* name;

 const tt_byte_t* value;

 tt_uint16_t size;

 tt_uint16_t flags;

} tt_values_list_t;

tt_values_list_t.next

Pointer to the next item in the list. The last item in the list must have next

set to zero.

tt_values_list_t.name

Name portion of the name/value pair. This is expected to be a

null-terminated UTF-8 string of size less than or equal to 256 characters

(including the null character).

tt_values_list_t.value

Value portion of the name-value pair. This is treated as a binary string. The

value does not need to be null-terminated.

tt_values_list_t.size

Size of the value, in 8-bit bytes.

tt_values_list_t.flags

Flags which affect how the name/value pair is interpreted by Transaction

Tracking API. Valid flags are:

v CYTA_VALUELIST_FLAG_NAME_RAW (1)– for z/OS only. Specifies that the

name field is binary or ASCII data, and is not to be translated from

EBCDIC to ASCII.

v CYTA_VALUELIST_FLAG_VALUE_RAW (2)– for z/OS only. Specifies that the

value field is binary or ASCII data, and is not to be translated from

EBCDIC to ASCII.

Chapter 6. High Level Language reference 31

32 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 7. Java reference

Reference information for the Transaction Tracking API Java wrapper, TTAPI4J, is

available separately as Java API documentation (Javadoc).

See the Transaction Tracking API SDK and Javadoc for TTAPI4J that are installed in

tusupport/ttapi/doc/ttapi4j as part of the Transaction Collector installation for

further information.

© Copyright IBM Corp. 2008 33

34 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Chapter 8. High Level Assembler Reference

This section is for High Level Assembler (HLASM) on z/OS.

HLASM Macro: CYTADFV

Macro to create Name/Value pairs to specify the minimal Vertical Context for an

event.

Purpose

Prepare minimum required linked Vertical Context Name/Value pair entries for an

event.

Input registers

No requirements.

Output registers

v R0 - 3 used as work register

v R4 - 13 unchanged

v R14 - 15 used as work register

Syntax

 Syntax Description

name name: symbol. Begin name in column 1

CYTADFV One or more blanks must follow CYTADFV

APPL=appl appl – Application Name. Constant string in

single quotes or pointer to string (register R2

– R12 in brackets or Rx address). Default:

Jobname (if batch) or Address Space name

(otherwise). Optional.

APPLLEN=length length – Length of Application Name.

Decimal constant in single quotes, register

(R2-R12 in brackets) or halfword label.

Optional if APPL is a label or constant

string.

XLATEA=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the application name when

sending event to Transaction Collector.

Otherwise the application name is translated

from EBCDIC to ASCII. Set this value to YES

(default) if the application name is an

EBCDIC string, NO otherwise. Optional.

COMPONENT=comp comp – Component Name. Constant string in

single quotes or pointer to string (register R2

– R12 in brackets or Rx address). Default:

BATCH (if batch) or STC (otherwise).

Optional.

© Copyright IBM Corp. 2008 35

Syntax Description

COMPONENTL=length length – Length of Component name.

Decimal constant in single quotes, register

(R2-R12 in brackets) or halfword label.

Optional if COMPONENT is a label or

constant string

XLATEC=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the component name when

sending event to Transaction Collector.

Otherwise the component name is translated

from EBCDIC to ASCII. Set this value to YES

(default) if the component name is an

EBCDIC string, NO otherwise. Optional.

HOST=host host – Host Name. Constant string in single

quotes or pointer to string (register R2 – R12

in brackets or Rx address). Default: Sysplex

name and z/OS SMFID (separated by a ‘/’ –

for example SYSPLEX1/MVS1). Optional.

HOSTL=length length – Length of Host Name. Decimal

constant in single quotes, register (R2-R12 in

brackets) or halfword label. Optional if

HOST is a label or constant string.

XLATEH=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the host name when

sending event to Transaction Collector.

Otherwise the host name is translated from

EBCDIC to ASCII. Set this value to YES

(default) if the host name is an EBCDIC

string, NO otherwise. Optional

TXN=txn txn – Transaction Name. Constant string in

single quotes or pointer to string (register R2

– R12 in brackets or Rx address). Default:

(unknown). Optional

TXNL=length length – Length of Transaction Name.

Decimal constant in single quotes, register

(R2-R12 in brackets) or halfword label.

Optional if TXNL is a label or constant

string.

XLATET=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the transaction name when

sending event to Transaction Collector.

Otherwise the transaction name is translated

from EBCDIC to ASCII. Set this value to YES

(default) if the transaction name is an

EBCDIC string, NO otherwise. Optional.

CHAINTO=ptr ptr – Pointer to an existing Vertical Context

list that these Name/Value pair entries are

to be chained off, or zero if none. Pointer

can point to any existing Name/Value pair

in an existing Vertical Context list. If set,

these Name/Value pairs will be added to

the end of the list. Default 0. Optional.

MF=form form one of S (inline), L (list form) or (E, list

addr) (execute form). Default S. Optional.

36 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Return codes

v none

Notes

v This macro creates four chained Name/Value pairs that provide the minimum

Vertical Context required for an event.

v If using execute form, ensure that list address is the list form of the CYTADFV

macro, NOT the list form of the CYTANV macro.

Sample

 LA R2,VCONTV

 LH R3,=AL2(L’VCONTV)

NVNAMC3 CYTANV NAME=’Division’,Value=’Payroll’

 CYTADFV TXN=’Txn1’,CHAINTO=NVNAMC3,MF=(E,NVNAMC4)

 BR R14

NVNAMC4 CYTADFV MF=L

HLASM Macro: CYTAINIT

Macro to call the CYTA_init function that initializes Transaction Tracking API for

HLASM callers.

Purpose

Initialize Transaction Tracking API for HLASM callers, and return a Configuration

Token for use by other ITCAM for Transaction Tracking macros.

Input registers

No requirements.

Output registers

v R0 - 3 used as work register

v R1 holds Configuration token if R15 = 0, zero otherwise

v R2 - 13 unchanged

v R14 used as work register

v R15 return code

Syntax

 Syntax Description

name name: symbol. Begin name in column 1

CYTAINIT One or more blanks must follow CYTAINIT

SUB=subsystem subsystem – Container subsystem – constant

in single quotes (4 chars), register in

brackets, or Rx address

MF=form form one of S (inline), L (list form) or (E, list

addr) (execute form). Default S. Optional.

Chapter 8. High Level Assembler Reference 37

Return codes

v As for CYTA_init function, see Appendix B, “Return codes,” on page 47.

Sample

 CYTAINIT SUB=’CYTZ’

 CYTAINIT SUB=#SUB1

 LA R5,#SUB1

 CYTAINIT SUB=(R5),MF=(E,INITL)

 INITL CYTAINIT MF=L

 #SUB1 DC C’CYTZ’

HLASM Macro: CYTANV

Macro to create a Name/Value pair entry.

Purpose

Prepare a Name/Value pair.

Input registers

No requirements.

Output registers

v R0 - 1 used as work register

v R2 - 13 unchanged

v R14 - 15 used as work register

Syntax

 Syntax Description

name name: symbol. Begin name in column 1.

CYTANV One or more blanks must follow CYTANV.

NAME=name name – Name/Value pair name. Constant

string in single quotes or pointer to null

terminated string (register R2 – R12 in

brackets or Rx address). Required.

VALUE=value value – Name/Value pair value. Constant

string in single quotes or pointer to string

(register R2 – R12 in brackets or Rx address

– value string does not have to be null

terminated). Required.

LEN=length length – Length of value. Decimal constant in

single quotes, register (R2-R12 in brackets)

or halfword label. Optional if VALUE is a

label or constant string.

XLATEN=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the name when sending

events to Transaction Collector. Otherwise

the name is translated from EBCDIC to

ASCII. Set this value to YES (default) if the

name is an EBCDIC string, NO otherwise.

Optional.

38 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Syntax Description

XLATEV=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the value when sending

events to Transaction Collector. Otherwise

the value is translated from EBCDIC to

ASCII. Set this value to YES (default) if the

value of the Name/Value pair is an EBCDIC

string, NO otherwise. Optional.

CHAINTO=ptr ptr – Pointer to an existing Name/Value pair

list hat this Name/Value pair entry is to be

chained off, or zero if none. Pointer can

point to any existing Name/Value pair in an

existing Name/Value pair list. If set, this

Name/Value pair will be added to the end

of the list. Default 0. Optional.

MF=form form one of S (inline), L (list form) or (E, list

addr) (execute form). Default S. Optional.

Return codes

v none

Notes

v Label is required for inline form of CYTANV.

Sample

NVNAMC3 CYTANV NAME=’Transaction’,VALUE=TXNVAL, X

 LEN=TXNVALL

 LA R2,VCONTV

 LA R3,L’VCONTV

 CYTANV NAME=VCONTN,VALUE=(R2),LEN=(R3), X

 CHAINTO=NVNAMC3,MF=(E,NVNAMC4)

 BR R14

NVNAMC4 CYTANV MF=L

VCONTN DC ’Process’ Name

 DC X’00’ MUST be null terminated

VCONTV DC ’ATM’ Value (not null terminated)

TXNVAL DC ’Txn1’ Value (not null terminated)

TXNVALL DC AL2(L’TXNVAL) Length of value

HLASM Macro: CYTATOK

Macro to call the CYTA_token function.

Purpose

Obtain fullword token unique across enterprise for HLASM callers.

Input registers

No requirements.

Chapter 8. High Level Assembler Reference 39

Output registers

v R0 used as work register

v R1 holds unique token if R15 = 0, zero otherwise

v R2 - 13 unchanged

v R14 used as work register

v R15 return code

Syntax

 Syntax Description

name name: symbol. Begin name in column 1.

CYTATOK One or more blanks must follow CYTATOK

TOKEN=token token – Fullword Configuration token from

CYTAINIT macro. Register in brackets, or Rx

address. Required.

MF=form form one of S (inline), L (list form) or (E, list

addr) (execute form). Default S. Optional.

Return codes

v As for CYTA_token function. See Appendix B, “Return codes,” on page 47.

Sample

 CYTAINIT SUB=’CYTZ’

 ST R1,ETOKEN

 LR R5,R1

 CYTATOK TOKEN=ETOKEN

 CYTATOK TOKEN=(R5),MF=(E,TOKL)

TOKL CYTATOK MF=L

ETOKEN DS F

HLASM Macro: CYTATRAK

Macro to call the CYTA_track function.

Purpose

Send completed event for HLASM callers.

Input registers

No requirements.

Output registers

v R0, R1 used as work register

v R2 - 13 unchanged

v R14 used as work register

v R15 return code

Syntax

 Syntax Description

name name: symbol. Begin name in column 1.

40 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Syntax Description

CYTATRAK One or more blanks must follow CYTATRAK

type type – Type of event. Must be one of:

STARTED, HERE, INBOUND, OUTBOUND,

FINISHED, STARTED_IN,

OUTBOUND_FIN, INBOUND_FIN.

Required.

TIME=time time – STCK value for timestamp of event. If

not specified, current time is used. Register

R2 – R12 in brackets, or Rx address.

Optional.

TXN=transaction transaction – Transaction Identifier. Constant

string in single quotes or pointer to string

(register R2 – R12 in brackets or Rx address).

Optional.

TXNLEN=length length – Length of Transaction Identifier.

Decimal constant in single quotes, register

(R2-R12 in brackets) or halfword label.

Optional if TXN is a label or constant string.

XLATET=yes/no If NO, no translation from EBCDIC to ASCII

is performed for the Transaction Identifier

when sending events to Transaction

Collector. Otherwise the Transaction

Identifier is translated from EBCDIC to

ASCII. Set this value to YES (default) if the

Transaction Identifier is an EBCDIC string,

NO otherwise. Optional.

TXNTXT=list list – Pointer to Transaction Context List – a

list of Name/Value pointers. Pointer

(register R2 – R12 in brackets or Rx address)

or zero if none. Default 0. Optional.

HTYPE=type type – Horizontal Caller type. Must be a

valid Caller Type or a number between 0

and 255. Default is ANY. Optional.

HLINK=linkid linkid – Horizontal Link. Constant string in

single quotes or pointer to string (register R2

– R12 in brackets or Rx address). Optional.

HLINKL=length length – Length of Horizontal Link. Decimal

constant in single quotes, register (R2-R12 in

brackets) or halfword label. Optional if

HLINK is a label or constant string.

XLATEH=yes/no If NO, no translation from EBCDIC to ASCII

is performed for Horizontal Link when

sending event to Transaction Collector.

Otherwise Horizontal Link is translated

from EBCDIC to ASCII. Set this value to YES

(default) if Horizontal Link is an EBCDIC

string, NO otherwise. Optional.

HCTXT=list list – Pointer to Horizontal Context List – a

list of Name/Value pointers. Pointer

(register R2 – R12 in brackets or Rx address)

or zero if none. Default 0. Optional

Chapter 8. High Level Assembler Reference 41

Syntax Description

HSTITCH=list list – Pointer to Horizontal Stitch List – a list

of Name/Value pointers. Pointer (register R2

– R12 in brackets or Rx address) or zero if

none. Default 0. Optional.

VTYPE=type type – Vertical Caller type. Must be a valid

Caller Type or a number between 0 and 255.

Default is ANY. Optional.

VLINK=linkid linkid – Vertical Link. Constant string in

single quotes or pointer to string (register R2

– R12 in brackets or Rx address). Optional.

VLINKL=length length – Length of Vertical Link. Decimal

constant in single quotes, register (R2-R12 in

brackets) or halfword label. Optional if

VLINK is a label or constant string.

XLATEV=yes/no If NO, no translation from EBCDIC to ASCII

is performed for Vertical Link when sending

events to the Transaction Collector.

Otherwise Vertical Link is translated from

EBCDIC to ASCII. Set this value to YES

(default) if Vertical Link is an EBCDIC

string, NO otherwise. Optional.

VCTXT=list list – Pointer to Vertical Context List – a list

of Name/Value pointers. Pointer (register R2

– R12 in brackets or Rx address) or zero if

none. Default 0. Optional.

VSTITCH=list list – Pointer to Vertical Stitch List – a list of

Name/Value pointers. Pointer (register R2 –

R12 in brackets or Rx address) or zero if

none. Default 0. Optional.

TOKEN=token token – Fullword Configuration token from

CYTAINIT macro. Register in brackets, or Rx

address. Required.

MF=form form one of S (inline), L (list form) or (E, list

addr) (execute form). Default S. Optional.

Return codes

v As for CYTA_track function. See Appendix B, “Return codes,” on page 47.

Notes

v If using execute form, event block is NOT cleared before event is sent. Any

previous event values will not be reset.

v If execute form of CYTATRAK is used with no parameters except TOKEN, then the

list address must point to a fully formed event block.

v Valid Caller Types are:

– ANY – Type 0 – no specified caller type

– GPS – Type 1 - GPS

– ARM – Type 2 - ARM

– WSA – Type 3 – WSA

– CTG – Type 4 – CICS Transaction Gateway

– MQ – Type 5 – Websphere MQ

42 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

– SOA – Type 6 - SOA

– WR – Type 7 – Web Resources

– CICS – Type 8 - CICS

– IMS™ – Type 9 – IMS

Caller Types can be any of these strings, or any number between 0 and 255.

Caller Types 0-199 are reserved by IBM. Caller Types 200-255 are available to

users.

Sample

CYTAINIT SUB=’CYTZ’

ST R1,ETOKEN

LA R5,VCONTXT

CYTATRAK TYPE=STARTED,VCTXT=VCONTXT,VLINK=’LINK1’, X

 HLINK=HLINK1,HLINKL=HLINK1L,TOKEN=ETOKEN

CYTATRAK TYPE=HERE,VCTXT=(R5),MF=(E,TRAKL)

* Code to fully populate event EVENT1 here

CYTATRAK TOKEN=ETOKEN,MF=(E,EVENT1)

BR R14

TRAKL CYTATRAK MF=L

EVENT1 CYTAEVNT MF=L

ETOKEN DS F

#HLINK1 DC C’HLinkID’

#HLINK1L DC AL2(L’#HLINK1)

Chapter 8. High Level Assembler Reference 43

44 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix A. Transport address format

This appendix provides definitions of the available addressing schemes for

connecting an instrumented application to a Transaction Collector.

The addressing format that Transaction Tracking API uses is modular - multiple

transports may be available depending on which platform the Transaction Tracking

API is running. There is a subset of transports guaranteed to be available on all

platforms. Each transport has a unique string associated with it.

The addresses used by Transaction Tracking API are always prefixed by the unique

identifier of the transport to be used, followed by a colon (:). The remainder of the

address following the colon, is interpreted in a module-dependant manner as

follows:

<module>:<address>

The following sections describe each module and the formats they define for their

addresses.

TCP/IP module (tcp)

The TCP/IP transport supports both IPv4 and IPv6 (where the platform supports

IPv6). The module’s unique identifier is tcp. This format is not supported on

z/OS.

Addresses for this module follow a URL-like format:

tcp:host:port

To allow the use of IPv6 addresses in this format, the host must be enclosed in

square brackets (as is done in URLs). For example, to connect to port 5455 on the

IPv6 local host, specify the following address:

tcp:[::1]:5455

The default TCP/IP value is tcp:127.0.0.1:5455.

Subsystem module (ssn)

The subsystem format is supported only on z/OS, and specifies the four character

subsystem name of the destination Transactions Container.

Addresses for this module are:

ssn:subsystem

For example, ssn:SS01.

The default SSN value is ssn:CYTZ. All other fields in the Configuration Block are

ignored for Subsystem users.

© Copyright IBM Corp. 2008 45

46 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix B. Return codes

Transaction Tracking API functions return values in a return code – a fullword

area.

The return codes are:

v 0 Operation successful

v 10 - 19: z/OS Related Error:

–

– 10 - Container subsystem not found

– 11 - Invalid Configuration Token passed

– 12 - Container subsystem inactive

– 13 - Dispatcher unavailable

– 14 - No more storage available

– 15 - No more ASIDs in ASID pool

– 16 - No Couriers available

– 17 - System Error Occurred

–

v 20-29: Distributed (non-z/OS) Related Error:

– 21 - Invalid

– 22 - Not Implemented

– 23 - Transport error

– 24 - No memory

– 25 - System error occurred

– 26 - Logic error occurred

– 27 - Unavailable, try again.

– 28 - Timeout
v 100-200 Event Record Invalid:

– 100 - Internal Error

– 101 - Invalid event block address

– 102 - Invalid event type

– 103 - Invalid timestamp

– 104 - Invalid transaction ID length (not positive)

– 105 - Invalid transaction ID flag

– 106 - Invalid transaction ID address

– 110 - Invalid horizontal ID length (not positive)

– 111 - Invalid horizontal ID flag

– 112 - Invalid horizontal caller type

– 113 - Invalid horizontal ID address

– 120 - Invalid vertical ID length (not positive)

– 121 - Invalid vertical ID flag

– 122 - Invalid vertical caller type

– 123 - Invalid vertical caller address

© Copyright IBM Corp. 2008 47

– 130 - Invalid Name string address in transaction list

– 131 - Invalid Value string address in transaction list

– 132 - Invalid Value string length in transaction list

– 133 - Invalid Name Value flag in transaction list

– 134 - Invalid Name/Value pair address in transaction list

– 140 - Invalid Name string address in horizontal stitch list

– 141 - Invalid Value string address in horizontal stitch list

– 142 - Invalid Value string length in horizontal stitch list

– 143 - Invalid Name Value flag in horizontal stitch list

– 144 - Invalid Name/Value pair address in horizontal stitch list

– 150 - Invalid Name string address in vertical stitch list

– 151 - Invalid Value string address in vertical stitch list

– 152 - Invalid Value string length in vertical stitch list

– 153 - Invalid Name Value flag in vertical stitch list

– 154 - Invalid Name/Value pair address in vertical stitch list

– 160 - Invalid Name string address in horizontal context list

– 161 - Invalid Value string address in horizontal context list

– 162 - Invalid Value string length in horizontal context list

– 163 - Invalid Name Value flag in horizontal context list

– 164 - Invalid Name/Value pair address in horizontal context list

– 170 - Invalid Name string address in vertical context list

– 171 - Invalid Value string address in vertical context list

– 172 - Invalid Value string length in vertical context list

– 173 - Invalid Name Value flag in vertical context list

– 174 - Invalid Name/Value pair address in vertical context list

48 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix C. Samples

Code examples.

z/OS samples provided

On z/OS, examples can also be found in the SCYTSAMP file, as described in

Table 5.

 Table 5. Samples in the SCYTSAMP library

Language Member Description

HLASM CYTAASM Sample HLASM program to send events.

CYTAINIT Macro to call the CYTA_init function.

CYTATRAK Macro to call the CYTA_track function.

CYTATOK Macro to call the CYTA_token function.

CYTAEVNT Macro to map an event.

CYTACFG Macro to map a Configuration Block.

CYTANVAL Macro to map a Name/Value pair entry.

CYTANV Macro to create a Name/Value pair entry.

CYTADFV Macro to create Name/Value pairs to specify the

minimal Vertical Context for an event.

COBOL CYTABCFG COBOL definitions for a Configuration Block.

CYTABCON COBOL constants required to use the Transaction

Tracking API.

CYTABEVT COBOL definitions for an event.

CYTABNV COBOL definitions for a Name/Value pair entry.

CYTABSMP Sample COBOL program to send events.

C CYTACSMP Sample C program to send events. C header file

definitions are in the SCYTH dataset.

Java CYTAJSMP Sample Java program to send events.

PL/I CYTAPCFG PL/I definitions for a Configuration Block.

CYTAPEVT PL/I definitions for an event.

CYTAPNV PL/I definitions for a Name/Value pair entry.

CYTAPSMP Sample PL/I program to send events.

All CYTASIDE Binder Side Deck required by dynamic callers.

C

/*==

 Includes

 ===*/

#pragma runopts(POSIX(ON))

#pragma runopts(TRAP(ON,SPIE))

#include <cytapi.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <unistd.h>

© Copyright IBM Corp. 2008 49

/*==

Mainline Code

== */

int main(int argc, char **argv)

{

 /* ---

 Variables

 --- */

 int rc; /* Return code from functions */

 int hlink1; /* Store numeric Hor Link IDs */

 /* --- Area for Communications Configuration Block -------------- */

 cyta_config_t configblk; /* Configuration block */

 /* --- Area for Event Block ------------------------------------- */

 cyta_event_t eventblk; /* Event block */

 /* --- Area for ’Standard’ Vertical Context Name/Value Pairs ---- */

 cyta_values_list_t vert1, vert2, vert3, vert4; /* Vertical Context*/

 /* ---

 Put together ’standard’ Vertical Contexts

 These are the minimum Vertical Context needed to display

 event in ITCAM for Txns workspaces. We need:

 HOST - Host Name. Normally Sysplex/SMFID

 COMPONENT - Component - what we are running under -eg.

 BATCH, STC, IMS, CICS, WAS, TSO.

 APPLICATION - Usually Job or Started Task Name

 TRANSACTION - The transaction we are running

 In your program, you will modify the values to suit your

 installation, however the names of the name/value pairs should

 not be changed

 --- */

 /* --- Hostname -- */

 memset(&vert1, 0, sizeof(vert1));

 static char *server = "Sysplex/Host";

 static char *server_lbl = "ServerName";

 vert1.name = server_lbl;

 vert1.value = server;

 vert1.size = strlen(server);

 /* --- ComponentName-- */

 memset(&vert2, 0, sizeof(vert2));

 static char *component = "STC";

 static char *component_lbl = "ComponentName";

 vert1.next = &vert2;

 vert2.name = component_lbl;

 vert2.value = component;

 vert2.size = strlen(component);

 /* --- ApplicationName --- */

 memset(&vert3, 0, sizeof(vert3));

 static char *application = "Application";

 static char *application_lbl = "ApplicationName";

 vert2.next = &vert3;

 vert3.name = application_lbl;

 vert3.value = application;

 vert3.size = strlen(application);

 /* --- Transaction (no EBCDIC -> ASCII Translation) -------------- */

 memset(&vert4, 0, sizeof(vert4));

 static int transaction = 254; /* Value is a number: 254 */

 static char *transaction_lbl = "TransactionName";

 vert3.next = &vert4;

 vert4.name = transaction_lbl;

 vert4.value = &transaction;

 vert4.size = sizeof(transaction);

 vert4.flags = CYTA_VALUELIST_FLAG_VALUE_RAW;/* No translation */

 /* ---

 Get Configuration Token

 The server field specifies where the ITCAM for Transactions

 events are to be sent. It must be of the form:

50 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

SSN:sub

 Where sub is the 4 character subsystem name used by the ITCAM

 for Transactions Collector Started Task

 --- */

 memset(&configblk, 0, sizeof(configblk)); /* Zero config block */

 configblk.server = "SSN:CYTZ"; /* Send events to CYTZ subsys */

 rc = CYTA_init(&configblk); /* Get the token */

 printf("(CYTACSMP) CYTAINIT Return Code=%d\n", rc);

 /* ---

 Send a ’Started’ Event

 We don’t specify a timestamp, so the time now is automatically

 inserted.

 --- */

 memset(&eventblk, 0, sizeof(eventblk)); /* Zero event block */

 eventblk.type = CYTA_STARTED_EVENT; /* Started Event */

 eventblk.vertical_context = &vert1; /* Vertical Context Addr */

 eventblk.vertical_id.link_id = "CYTACSMP"; /* Vertical Link ID */

 eventblk.vertical_id.link_id_size = 8; /* Link ID Length */

 rc = CYTA_track(&configblk, &eventblk); /* Send the event */

 printf("(CYTACSMP) STARTED Event Return Code=%d\n", rc);

 /* ---

 Send an Outbound Event

 (we only need to specify changed fields - all other fields remain

 from the Started event)

 -- */

 eventblk.type = CYTA_OUTBOUND_EVENT; /* Started Event */

 eventblk.horizontal_id.link_id = "Hlink Value";/* Horizontal ID */

 eventblk.horizontal_id.link_id_size = 11;/* Link ID Length */

 rc = CYTA_track(&configblk, &eventblk); /* Send the event */

 printf("(CYTACSMP) OUTBOUND Event Return Code=%d\n", rc);

 /* ---

 Send an Inbound Finished Event

 We change the Horizontal Link to the incoming Link ID - this

 is the ID specified by the application sending the response

 in its OUTBOUND event. In this case, the Link ID is a number,

 so we MUST set the flag so it is NOT translated from EBCDIC to

 ASCII.

 -- */

 eventblk.type = CYTA_INBOUND_FINISHED_EVENT; /* Event Type */

 hlink1 = 56; /* Horizontal Link ID=56 */

 eventblk.horizontal_id.link_id = &hlink1 /* Horizontal ID */

 eventblk.horizontal_id.link_id_size = 4; /* Link ID Length */

 eventblk.horizontal_id.flags = CYTA_ASSOCIATION_FLAG_LINK_RAW;

 /* Do NOT xlate from EBCDIC */

 rc = CYTA_track(&configblk, &eventblk); /* Send the event */

 printf("(CYTACSMP) INBOUND FINISHED Event Return Code=%d\n", rc);

 } /* main */

COBOL

CBL RENT,PGMNAME(LM),LIB,NODYNAM,NODLL

 * ===

 *

 * Identification Division

 *

 * ===

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "CYTABSMP".

 * ===

 *

 * Environment Division

 *

 * ===

 ENVIRONMENT DIVISION.

Appendix C. Samples 51

* ===

 *

 * Data Division

 *

 * ===

 DATA DIVISION.

 Working-Storage Section.

 * ---

 * Constants Needed to Use the ITCAM for Txns API

 * ---

 COPY CYTABCON.

 * ---

 * Area to hold our event block

 * ---

 COPY CYTABEVT.

 * ---

 * Area to hold our Configuration Block

 * ---

 COPY CYTABCFG.

 * ---

 * Area for ’Standard’ 4 Vertical Context Name/Value pairs.

 * These are the minimum Vertical Context needed to display

 * event in ITCAM for Txns workspaces

 * HOST - Host Name. Normally Sysplex/SMFID

 * COMPONENT - Component - what we are running under -eg.

 * BATCH, STC, IMS, CICS, WAS, TSO.

 * APPLICATION - Usually Job or Started Task Name

 * TRANSACTION - The transaction we are running

 *

 * Each has three variables:

 * xxx-LBL - the label of the Name/Value Pair, ending in

 * nulls.

 * xxx - area to hold the actual value

 * xxx-NV - area to hold the name/value pair

 *

 * In your program, you will modify the values to suit your

 * installation, however the labels should not be changed

 * ---

 01 HOST-LBL pic x(11) value z"ServerName".

 01 HOST pic x(12) value "Sysplex/Host".

 01 HOST-NV pic x(16).

 01 COMPONENT-LBL pic x(14) value z"ComponentName".

 01 COMPONENT pic x(3) value "STC".

 01 COMPONENT-NV pic x(16).

 01 APPLICATION-LBL pic x(16) value z"ApplicationName".

 01 APPLICATION pic x(11) value "Application".

01 APPLICATION-NV pic x(16).

 01 TRANSACTION-LBL pic x(16) value z"TransactionName".

 01 TRANSACTION pic s9(9) binary value 254.

 01 TRANSACTION-NV pic x(16).

 * ---

 * Outbound and Inbound Horizontal Link IDs

 * For your organisation, specify unique values here. But

 * for this example, constant values will be used

 * HLINK-OUT - Outgoing Horizontal Link (string)

 * HLINK-IN - Incoming Horizontal Link (number)

 * ---

 01 HLINK-OUT pic x(11) value ’HLINK VALUE’.

 01 HLINK-IN pic s9(9) binary value 56.

52 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

* ---

 * Vertical Link ID

 * This value should be unique for every work unit. We will

 * use a constant in this example.

 * ---

 01 VLINK pic x(8) value ’CYTABSMP’.

 * ---

 * String Specifying Destination for Events

 * This must be of the form SSN:sub - sub is the ITCAM for

 * Transactions Container subsystem.

 * ---

 01 SERVER pic x(8) value ’SSN:CYTZ’.

 * ---

 * Definition used to insert a one byte length field

 * LINK-LEN - Halfword Link Name length

 * LINK-LEN-BYTE - One byte Link Name length

 * ---

 01 LINK-LEN pic s9(3) binary.

 01 LINK-LEN-STR redefines LINK-LEN.

 02 filler pic x(1).

 02 LINK-LEN-BYTE pic x(1).

 * ---

 * Fullword to hold return code from CYTA_track

 * ---

 01 RC pic S9(9) comp.

 Linkage Section.

 * ---

 * Map Name/Value Pair Entry

 * ---

 COPY CYTABNV.

 * ===

 *

 * Procedure Division

 *

 * ===

 PROCEDURE DIVISION.

 DISPLAY "(CYTABSMP) Entry".

 * ---

 * Initialize Our Event Block

 * ---

 INITIALIZE CYTA-EVENT REPLACING ALPHANUMERIC BY x"00".

 * ---

 * Setup a Name/Value Pair for Host

 * 1. Address the Name/Value pair

 * 2. Initialise the Name/Value pair to nulls

 * 3. Set the Name pointer

 * 4. Set the Value pointer

 * 5. Set the Value length

 * ---

 SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF HOST-NV.

 INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".

 SET CYTA-NV-NAME-POINTER TO ADDRESS OF HOST-LBL.

 SET CYTA-NV-VALUE-POINTER TO ADDRESS OF HOST.

 MOVE LENGTH OF HOST TO CYTA-NV-VALUE-LENGTH.

 * ---

 * Setup a Name/Value Pair for Component

 * 1. Host Name/Value pair chains to Component Name/Value pair

 * 2. (steps as for Host Name/Value Pair)

Appendix C. Samples 53

* 7. Stop EBCDIC->ASCII transaction of Department ID (as it

 * is a number, not a string)

 * ---

 SET CYTA-NV-NEXT-POINTER TO ADDRESS OF COMPONENT-NV.

 SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF COMPONENT-NV.

 INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".

 SET CYTA-NV-NAME-POINTER TO ADDRESS OF COMPONENT-LBL.

 SET CYTA-NV-VALUE-POINTER TO ADDRESS OF COMPONENT.

 MOVE LENGTH OF COMPONENT TO CYTA-NV-VALUE-LENGTH.

 * ---

 * Setup a Name/Value Pair for Application

 * ---

 SET CYTA-NV-NEXT-POINTER TO ADDRESS OF APPLICATION-NV.

 SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF APPLICATION-NV.

 INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".

 SET CYTA-NV-NAME-POINTER TO ADDRESS OF APPLICATION-LBL.

 SET CYTA-NV-VALUE-POINTER TO ADDRESS OF APPLICATION.

 MOVE LENGTH OF APPLICATION TO CYTA-NV-VALUE-LENGTH.

 * ---

 * Setup a Name/Value Pair for Transaction

 * Note that the Transaction Value is a number, so we

 * set the flags so that NO EBCDIC to ASCII translation

 * will be performed.

 * ---

 SET CYTA-NV-NEXT-POINTER TO ADDRESS OF TRANSACTION-NV.

 SET ADDRESS OF CYTA-NV-LIST TO ADDRESS OF TRANSACTION-NV.

 INITIALIZE CYTA-NV-LIST REPLACING ALPHANUMERIC BY x"00".

 SET CYTA-NV-NAME-POINTER TO ADDRESS OF TRANSACTION-LBL.

 SET CYTA-NV-VALUE-POINTER TO ADDRESS OF TRANSACTION.

 MOVE LENGTH OF TRANSACTION TO CYTA-NV-VALUE-LENGTH.

 MOVE CYTA-DONT-TR-VALUE-FROM-EBCDIC TO CYTA-NV-FLAGS.

 * ---

 * Call CYTA_init to get Configuration Token

 * 1. Specify server string - if this is omitted, the

 * default is: SSN:CYTZ

 * 2. Call CYTA_init

 * ---

 SET CYTA-CFG-SERVER TO ADDRESS OF SERVER.

 CALL "CYTA_init" USING CYTA-CFG-BLOCK RETURNING RC.

 DISPLAY "(CYTABSMP) CYTA_init Return Code=" RC.

 * ---

 * Send a STARTED event

 * 1. Move in event type

 * 2. Move in Vertical link ID

 * 3. Move in Vertical link length

 * 4. (Don’t specify time, so it is automatically inserted)

 * 5. Specify Vertical Context that we’ve built

 * 6. Call the API (statically linked).

 * ---

 MOVE CYTA-STARTED TO CYTA-E-TYPE.

 SET CYTA-E-VERT-LINK-ID TO ADDRESS OF VLINK.

 MOVE LENGTH OF VLINK TO LINK-LEN.

 MOVE LINK-LEN-BYTE TO CYTA-E-VERT-LINK-LENGTH.

 SET CYTA-E-VERT-CONTEXT-LIST TO ADDRESS OF HOST-NV.

 CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT

 RETURNING RC.

 DISPLAY "(CYTABSMP) STARTED Event Return Code=" RC.

 * ---

 * Send an OUTBOUND event

 * 1. Move in event type

54 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

* 2. (No need to change Vertical Link or Context)

 * 3. Specify Horizontal Link (program at other end will

 * need to specify this on it’s INBOUND event).

 * 4. Specify Horizontal Link length

 * 5. Call the API

 * ---

 MOVE CYTA-OUTBOUND TO CYTA-E-TYPE.

 SET CYTA-E-HORZ-LINK-ID TO ADDRESS OF HLINK-OUT.

 MOVE LENGTH OF HLINK-OUT TO LINK-LEN.

 MOVE LINK-LEN-BYTE TO CYTA-E-HORZ-LINK-LENGTH.

 CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT

 RETURNING RC.

 DISPLAY "(CYTABSMP) OUTBOUND Event Return Code=" RC.

 * ---

 * Send an INBOUND FINISHED event

 * 1. Move in event type

 * 2. (No need to change Vertical Link or Context)

 * 3. Specify Horizontal Link (program at other end will

 * need to specify this on it’s OUTBOUND event).

 * 4. Specify Horizontal Link length

 * 5. As Horizontal Link is a number, stop conversion from

 * EBCDIC

 * 6. Call the API

 * ---

 MOVE CYTA-INBOUND-FINISHED TO CYTA-E-TYPE.

 SET CYTA-E-HORZ-LINK-ID TO ADDRESS OF HLINK-IN.

 MOVE LENGTH OF HLINK-IN TO LINK-LEN.

 MOVE LINK-LEN-BYTE TO CYTA-E-HORZ-LINK-LENGTH.

 MOVE CYTA-DONT-TR-FROM-EBCDIC TO CYTA-E-HORZ-LINK-FLAGS.

 CALL "CYTA_track" USING CYTA-CFG-BLOCK CYTA-EVENT

 RETURNING RC.

 DISPLAY "(CYTABSMP) INBOUND FINISHED Event Return Code=" RC.

 * ---

 * And we’re done

 * ---

 GOBACK.

Java

import ttapi4j.ServerFactory;

import ttapi4j.Server;

import ttapi4j.Event;

import ttapi4j.InstanceID;

public class CYTAJSMP

{

 public static void main(StringÝ} args) throws Exception

 {

 System.out.println("(CYTAJSMP) Entry");

 /* --- Get Configuration Token - Sending to Subsys CYTZ ---- */

 Server s = ServerFactory.getServer("ssn:CYTZ");

 /* --- Create Started Event -------------------------------- */

 Event e = s.createEvent();

 e.setType(Event.Type.STARTED);

 e.getVerticalID().setLinkID("CYTAJSMP");

 e.getVerticalContext().put("ServerName","Sysplex/Host");

 e.getVerticalContext().put("ComponentName", "USS Shell");

 e.getVerticalContext().put("ApplicationName", "Application");

 e.getVerticalContext().put("TransactionName", "CYTAJSMP");

 s.track(e);

Appendix C. Samples 55

/* --- Create Outbound Event ------------------------------- */

 e.getHorizontalID().setLinkID("Hlink Value");

 e.setType(Event.Type.OUTBOUND);

 s.track(e);

 /* --- Create Inbound Finished Event ----------------------- */

 e.setType(Event.Type.INBOUND_FINISHED);

 s.track(e);

 /* --- Cleanup and Exit ------------------------------------- */

 s.close();

 System.out.println("(CYTAJSMP) Exit");

 }

}

PL/I

%PROCESS Limits(Extname(15)) Source Arch(1);

%PROCESS Default(Linkage(Optlink) Nullsys);

%PROCESS Margins(2,72) Rules(IBM) System(MVS);

 CYTAPSMP: Procedure Options(main);

 /*===

 Storage Definitions

 ==*/

 /* ---

 Include Structures for ITCAM for Transactions

 --- */

 %include CYTAPEVT;

 %include CYTAPCFG;

 %include CYTAPNV;

 /* ---

 Declarations for ’Standard’ 4 Vertical Context Name/Value pairs.

 These are the minimum Vertical Context needed to display

 an event in ITCAM for Txns workspaces:

 Host - Host Name. Normally Sysplex/SMFID

 Component - Component - what we are running under, like:

 BATCH, STC, IMS, CICS, WAS, or TSO.

 Application - Usually Job or Started Task Name

 Transaction - The transaction we are running

 We’re defining three variables each:

 xxxlbl - the label of the Name/Value Pair, ending in

 nulls.

 xxxnam - area to hold the actual value

 xxxaddr - address of name/value pair

 In your program, you will modify the values to suit your

 installation, however the labels should not be changed

 --- */

 Dcl hostaddr Pointer;

 Dcl hostlbl Char(11) Varyingz Init(’ServerName’);

 Dcl hostnam Char(12) Init(’Sysplex/Host’);

 Dcl compaddr Pointer;

 Dcl complbl Char(14) Varyingz Init(’ComponentName’);

 Dcl compnam Char(3) Init(’STC’);

 Dcl appladdr Pointer;

 Dcl appllbl Char(16) Varyingz Init(’ApplicationName’);

 Dcl applnam Char(11) Init(’Application’);

 Dcl tranaddr Pointer;

56 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Dcl tranlbl Char(16) Varyingz Init(’TransactionName’);

 Dcl trannam Fixed(32) Binary Unsigned Init(254);

 /* ---

 Outbound and Inbound Horizontal Link IDs

 For your organisation, specify unique values here. But

 for this example, constant values will be used

 hlinkout - Outgoing Horizontal Link (string)

 hlinkin - Incoming Horizontal Link (number)

 --- */

 Dcl hlinkout Char(11) Init("Hlink Value");

 Dcl hlinkin Fixed(32) Binary Unsigned Init(56);

 /* ---

 Vertical Link ID

 This value should be unique for every work unit. We will

 use a constant in this example.

 --- */

 Dcl vlink Char(8) Init("CYTAPSMP");

 /* ---

 Communications Server

 This string specifies where the ITCAM for Transactions Events

 are to be sent. It must be of the form:

 SSN:sub

 Where sub is the 4 character subsystem name used by the ITCAM

 for Transactions Collector Started Task

 --- */

 Dcl server Char(8) Init("SSN:CYTZ");

 /* ---

 Area that will hold Event Block and all Name/Value Pairs

 --- */

 Dcl stgarea Area; /* stgarea is 1000 bytes long */

 /*===

 Main Program

 ==*/

 /* ---

 Setup Name/Value Pair for Host

 --- */

 Allocate cytanval In(stgarea); /* Allocate storage */

 hostaddr = cytanvalp; /* Save the address */

 cytannam = Addr(hostlbl); /* Name */

 cytanvl = Addr(hostnam); /* Value */

 cytanvll = Length(hostnam); /* Value Length */

 /* ---

 Setup Name/Value Pair for Component

 --- */

 Allocate cytanval In(stgarea); /* Allocate storage */

 compaddr = cytanvalp; /* Save the address */

 cytannam = Addr(complbl); /* Name */

 cytanvl = Addr(compnam); /* Value */

 cytanvll = Length(compnam); /* Value Length */

 hostaddr->cytannxt = compaddr; /* Chain off Host Pair */

 /* ---

 Setup Name/Value Pair for Application

 --- */

 Allocate cytanval In(stgarea); /* Allocate storage */

 appladdr = cytanvalp; /* Save the address */

 cytannam = Addr(appllbl); /* Name */

 cytanvl = Addr(applnam); /* Value */

Appendix C. Samples 57

cytanvll = Length(applnam); /* Value Length */

 compaddr->cytannxt = appladdr; /* Chain off Host Pair */

 /* ---

 Setup Name/Value Pair for Transaction

 NB: Because Transaction is a number, we set the flag so that this

 value is NOT translated from EBCDIC to ASCII.

 --- */

 Allocate cytanval In(stgarea); /* Allocate storage */

 tranaddr = cytanvalp; /* Save the address */

 cytannam = Addr(tranlbl); /* Name */

 cytanvl = Addr(trannam); /* Value */

 cytannvx = ’1’B; /* Do NOT xlate Value */

 cytanvll = 4; /* Value Length */

 appladdr->cytannxt = tranaddr; /* Chain off Host Pair */

 /* ---

 Get our Configuration Token

 --- */

 Allocate cytacfg In(stgarea); /* Allocate stg for cfg block */

 cytacsrv = Addr(server); /* Server */

 Call CYTA_init(cytacfg);

 Display (’(CYTAPSMP) CYTAINIT Return Code=’ || PLIRETV());

 /* ---

 Send a Started Event

 --- */

 Allocate cytaevnt In(stgarea); /* Allocate storage for event */

 cytaetyp = cytaesta; /* Started Event Type */

 cytaevli = Addr(vlink); /* Vertical Link ID */

 cytaevll = Length(vlink); /* Vertical Link Length */

 cytaevcn = hostaddr; /* Vertical Context Start */

 Call CYTA_track(cytacfg, cytaevnt);

 Display (’(CYTAPSMP) STARTED Event Return Code=’ || PLIRETV());

 /* ---

 Send an Outbound Event

 (we only need to specify changed fields - all other fields remain

 from the Started event)

 --- */

 cytaetyp = cytaeob; /* Oubound Event Type */

 cytaehli = Addr(hlinkout); /* Horizontal Link ID */

 cytaehll = Length(hlinkout); /* Horizontal Link Length */

 Call CYTA_track(cytacfg, cytaevnt);

 Display (’(CYTAPSMP) OUTBOUND Event Return Code=’ || PLIRETV());

 /* ---

 Send an Inbound Finished Event

 --- */

 cytaetyp = cytaeibf; /* Oubound Event Type */

 cytaehli = Addr(hlinkin); /* Horizontal Link ID */

 cytaehll = 4; /* Horizontal Link Length */

 cytaehnx = ’1’b; /* Link ID is a number, so do */

 /* NOT translate from EBCDIC. */

 Call CYTA_track(cytacfg, cytaevnt);

 Display (’(CYTAPSMP) INBOUND FINISHED Event Return Code=’ ||

 PLIRETV());

 /* ---

 Free up our storage

 --- */

 stgarea = Empty(); /* Free all storage */

 End CYTAPSMP;

58 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

HLASM

===

* Main Program

===

CYTAASM RSECT

CYTAASM AMODE 31

CYTAASM RMODE ANY

 BAKR R14,0

 LR R12,R15

 USING CYTAASM,R12

* Setup workarea

 STORAGE OBTAIN,LENGTH=@WORKL,ADDR=(R1)

 ST R1,8(R13) New savearea ptr back to caller

 ST R13,4(R1) Old save area ptr in new

 LR R13,R1

 USING WORK,R13

 MVC SAVEAREA+4,=C’F1SA’ Show we are using linkage stack

* Setup Vertical Context

* Your event needs some basic values here, so we use the CYTADFV

* to fill them in. We chain these values of our own IDNum entry.

* Note that IDNum is a number, so we don’t translate it from EBCDIC

* to ASCII before sending it down.

 LA R1,#IDNUM

 CYTANV NAME=’IDNum’,VALUE=(R1),LEN=#IDNUML,XLATEV=NO, x

 MF=(E,NAMVALV1)

 CYTADFV TXN=’CYTAASM’,CHAINTO=NAMVALV1,MF=(E,NAMVALVC)

* Get a Configuration Token - we will use the subsystem CYTZ. *

 CYTAINIT SUB=’CYTZ’ Get Token

 LTR R15,R15 If successful

 BNZ LEAVEX

 ST R1,TTOKEN Save it

* Always start with a STARTED Event

* The Vertical Link should be the same for all events in this work

* unit until a FINISHED event is sent.

* Set the entire event block to zeroes before filling it in.

 XC EVENTBLK(@EVENTBLK),EVENTBLK

 CYTATRAK STARTED, X

 VCTXT=NAMVALV1, X

 TOKEN=TTOKEN, X

 VLINK=’CYTAASM’, X

 MF=(E,EVENTBLK)

 LTR R15,R15 If not successful

 BNZ LEAVEX Exit

* Send an Outbound Event - this indicates that we’ve sent something

* to someone else.

* Remember we need a Horizontal Link and/or a Horizontal Stitch

* here - and the program on the other end also needs to specify the

* same link/stitch on their Inbound event.

* Remember also that this event remembers all the values from the

* previous CYTATRAK call. So we only need to specify the Event Type,

* and the values we are overriding (in this case, HLINK).

 CYTATRAK OUTBOUND,HLINK=’CYTAOUT’,TOKEN=TTOKEN,MF=(E,EVENTBLK)

Appendix C. Samples 59

LTR R15,R15 If not successful

 BNZ LEAVEX Exit

* (often a program would wait here for something to come back)

* Send an Inbound Finished Event - this is two events (Inbound and

* Finished) rolled into one.

* We also need a Horizontal Link and/or a Horizontal Stitch here, but

* not the one we sent - the one that the program at the other end has

* specified.

* Remember that we also finish with a FINISHED event.

 CYTATRAK INBOUND_FIN,HLINK=’CYTABACK’,TOKEN=TTOKEN, X

 MF=(E,EVENTBLK)

 LTR R15,R15 If not successful

 BNZ LEAVEX Exit

* Return to Caller

LEAVE DS 0H

 LR R4,R15 Save return code

 STORAGE RELEASE,LENGTH=@WORKL,ADDR=(R13) Release workarea

 LR R15,R4

 PR Return to caller

* Error Routine - Error occurred. Exit with return code

LEAVEX DS 0H

 B LEAVE

*==

*

* PROGRAM CONSTANTS AND LITERALS

*

*==

#IDNUM DC F’45’

#IDNUML DC AL2(L’#IDNUM)

 LTORG

*==

*

* Mapping Macros and DSECTs

*

*==

* Workarea

WORK DSECT

SAVEAREA DS 18F Savearea

STCKTIME DS D STCK Timestamp

TTOKEN DS F Fullword for Config Token

NAMVALVC CYTADFV MF=L Vertical Ctxt Nam/Val Pairs

NAMVALV1 CYTANV MF=L Extra Vert Context Nam/Val pair

EVENTBLK CYTATRAK MF=L Event Block

@EVENTBLK EQU *-EVENTBLK Length of Event Block

@WORKL EQU *-WORK Length of Workarea

* Register Equates

60 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Appendix C. Samples 61

62 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix D. kto_stitching file

The kto_stitching.xml file defines how horizontal and vertical stitching occurs for

events. It consists of definitions for Stitch Pairs.

Consider the following example. A CICS region and a Websphere MQ application

communicate to each other. A monitor in CICS and a monitor in Websphere MQ

both send Transactions events.

Application 1
(CICS)

Application 2
(WebSphere MQ)

For Transactions to be able to stitch the CICS and Websphere MQ events together,

it must know which Stitching name/value pairs must be matched. For example,

CICS and WebSphere® MQ may send a ServerName stitching name/value pair.

The Stitch Pair entry in kto_stitching.xml tells the Transaction Collector that a CICS

event (type 8) ServerName field must match a Websphere MQ event (type 5)

ServerName field for two events to be eligible for stitching. The kto_stitching.xml

file resides in the Transaction Collector directory.

Format

kto_stitching.xml is an XML file with the following format:

TTEMA Stitching

 Stitch Criteria

 StitchPair

 StitchName

 Stitch Priorities

TTEMA Stitching defines the beginning of Transactions stitching definitions. It has

no fields.

Stitch Criteria defines the beginning of a list of Stitch Pairs. It has no fields.

StitchPair defines global parameters for the Stitch Pair entry. It has the following

fields:

© Copyright IBM Corp. 2008 63

v Name – name of the Stitch Pair – can be any string.

v horizontal – true if this pattern is for matching horizontal stitches. Default:

false.

v vertical – true if this pattern is for matching vertical stitches. Default: false.

v reflective – true if this pattern is to be applied for messages sent both ways. If

false, then this Stitch Pair will only apply to events sent from the first caller to

the second caller. Default: false.

StitchNameList defines the beginning of a list of stitching pairs to be matched. It

has the following fields:

v caller – caller type for the following pairs. Must be a valid link type, that is, a

number between 0 and 255. See the Building and Event section for a list of link

types.

StitchName defines a pair to be matched. It has the following fields:

v name – the name of a stitching name/value pair. Remember that this is case

sensitive.

Example

The following is an example of a kto_stitching.xml file:

This example file defines how ITCAM for MQ Tracking and ITCAM for CICS

events will be stitched. In this example, all the fields in Table 6 must match fully

for a stitch to occur.

 Table 6. Field matching

ITCAM for MQ Tracking ITCAM for CICS

ServerName ServerName

QMgrName qmgr

ObjName rslvdQueue

MsgId msgId

CorrelId corrId

PutDate putdate

64 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Table 6. Field matching (continued)

ITCAM for MQ Tracking ITCAM for CICS

PutTime puttime

Event flows in both directions (MQ to CICS and CICS to MQ) are covered by this

rule.

Appendix D. kto_stitching file 65

66 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix E. Transaction Collector Context Mask

The Transaction Collector performs aggregation of events based on context.

For example, all events must specify the ServerName in the vertical context. The

Transaction Collector aggregates all events by ServerName, and this is displayed in

the Transactions workspaces.

The contexts that the Transaction Collectors aggregate are specified in a Context

Mask file. This file is a text file that resides in the Transaction Collector directory.

The format of this file is as follows:

Comments begin in column 1. Do not use blank spaces.

Don’t leave blank lines

Use the Compare statement to tell the Transactions Collector to # aggregate.

On the line following, specify the name of the context to aggregate on.

Finish the statement with a * in column 1.

For example:

compare

ApplicationName

*

The above statement tells Transactions Collector to

aggregate on ApplicationName context values. You

cannot use wildcards – specify the complete context

name.

You can also use the ignore statement. This tells the

Transactions Collector not to aggregate. For example:

ignore

UserID

*

The above statement tells the Transactions Collector NOT

to aggregate on UserID.

This is the default – all context values are ignored

unless specified in a compare statement.

Specify the name of the Context Mask file during installation of the Transaction

Collector, and if reconfigured, in the Transaction Collector Configuration dialog

box.

© Copyright IBM Corp. 2008 67

In Figure 4, the Context Mask file name and location is C:\IBM\ITM\TMAITM6\
contextmask_default.cfg. This is the default Context Mask supplied with ITCAM

for Transaction Tracking. More than one file can be specified in the Context Mask

Files field: separate each file name with a semi-colon (;).

Figure 4. Transaction Collector Configuration dialog box

68 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Appendix F. Accessibility

Accessibility features help users with physical disabilities, such as restricted

mobility or limited vision, to use software products successfully.

The major accessibility features in this product enable users to do the following:

v Use assistive technologies, such as screen-reader software and digital speech

synthesizer, to hear what is displayed on the screen. Consult the product

documentation of the assistive technology for details on using those technologies

with this product.

v Operate specific or equivalent features using only the keyboard.

v Magnify what is displayed on the screen.

In addition, the product documentation was modified to include the following

features to aid accessibility:

v All documentation is available in both HTML and convertible PDF formats to

give the maximum opportunity for users to apply screen-reader software.

v All images in the documentation are provided with alternative text so that users

with vision impairments can understand the contents of the images.

Navigating the interface using the keyboard

Standard shortcut and accelerator keys are used by the product and are

documented by the operating system. Refer to the documentation provided by

your operating system for more information.

Magnifying what is displayed on the screen

You can enlarge information on the product windows using facilities provided by

the operating systems on which the product is run. For example, in a Microsoft

Windows environment, you can lower the resolution of the screen to enlarge the

font sizes of the text on the screen. Refer to the documentation provided by your

operating system for more information.

© Copyright IBM Corp. 2008 69

70 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

 The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 71

Licensees of this program who want to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road Austin,

TX 78758

U.S.A.

 Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

72 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. If these and other IBM trademarked terms are marked on their first

occurrence in this information with a trademark symbol (® or

™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common

law trademarks in other countries. A current list of IBM trademarks is available on

the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java, JavaScript™, and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 73

74 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Glossary

agent Software installed on systems you want to

monitor. The agent collects data about an

operating system, a subsystem, or an

application.

aggregate

An average of all response time detected

by the monitoring software over a specific

time period.

alert A message indicating an event has

occurred. Alerts have associated

predefined severity levels. They are listed

in order of increasing severity:

Informational, Warning, and Critical.

Classifying alerts into severity levels

provides the ability to focus on the most

severe problems first.

application

Represents the business process being

monitored, such as Lotus Notes or SAP.

application pattern

Determines what transactions to monitor

and how to group them.

ARM An application that passes information

about subtransactions between business

applications across a network. The

Application Response Measurement is

designed to instrument a unit of work,

such as a business transaction, that is

sensitive to performance time. The

transaction is something that must be

measured and monitored and for which a

corrective action can be taken. See

http://www.opengroup.org/tech/
management/arm/ for further

information.

ARM response codes

The ARM response codes have the

following definitions

0 The ARM call was successful.

-249 An unspecific error occurred while

 processing an ARM call.

-1000 Invalid parameter passed to ARM.

-1001 Transaction name passed to

 ARM was an empty string.

-1002 Transaction Name passed to

 ARM contains too many characters.

-1003 Error performing character

 set conversion.

-1100 Application ID passed to ARM is not valid.

-1101 Output application ID passed to ARM is

 not valid. (may be null)

-1102 Output application handle passed to ARM

 is not valid. (may be null)

-1200 Transaction ID passed to ARM is not valid.

-1201 Transaction ID passed to ARM is not valid.

 (may be null)

-1202 Transaction status passed to ARM is not

 valid.

-1203 Output Transaction ID passed to ARM

 is not valid. (may be null)

-1204 Output Transaction Handle passed to

 ARM is not valid. (may be null)

-1300 Metric ID passed to ARM is not valid.

-1301 Metric Format passed to ARM is not valid.

-1302 Metric Usage passed to ARM is not valid.

-1303 Metric Unit passed to ARM is not valid.

-1304 Output Metric ID passed to ARM is

 not valid. (may be null)

-1305 Metric name is not valid, must not start

 with ARM:

-1400 Correlator passed to ARM is not valid.

-1401 Flag number passed to ARM is zero.

 It is 1 (app trace flag)

 or 2 (agent trace flag).

-1402 Flag number passed to ARM is not valid.

-1500 Charset passed in to ARM is not supported.

-1501 An error occurred that was not predefined

 by ARM.

-2000 Arm engine is not currently running.

-2001 Communication is not possible from

 libarm to the ARM engine.

-2002 Communication is not possible from

 the ARM engine to libarm.

-50000 Transaction is not registered.

-50001 Application is not registered.

-50002 Registered application ID is not valid.

-50003 Started transaction handle is not valid.

Additional Java error codes:

-15001 Loading of the Native Library failed,

 libarmjni4 not found

-15051 Size of identity names array does

 not match size of values array

-15052 Identity name index out of bounds

-15053 Identity name array is null

-15054 Identity value index out of bounds

-15055 identity value array is null

© Copyright IBM Corp. 2008 75

http://www.opengroup.org/tech/management/arm/
http://www.opengroup.org/tech/management/arm/

-15056 context name index out of bounds

-15057 context name array is null

-15101 Identity Properties is not valid

-15151 ApplicationDefinition

 is null

-15152 ApplicationDefinition

 is not valid

-15153 context value index out of bounds

-15154 context value array is null

-15201 Application object is null

-15202 Transaction Definition is null

-15203 Context value index out of bounds

-15204 context values array is null

-15205 Transaction context sub-buffer

 will not be created

-15206 Transaction is inactive

-15207 Transaction is active

-15208 Unblock called without block

-15208 Unbind called without bind

-15251 ApplicationDefinition is null

-15252 ApplicationDefinition is not valid

-15253 Identity Properties is not valid

-15301 Metric Group definition index out

 of bounds

-15302 Metric Group definition array is null

-15351 Metric group index out of bounds

-15352 Metric group array is null

-15353 Metric group array entry is null

-15354 Metric group array is not valid

-15355 Metric group array and

 MetricGroupDefinition mismatch

-15356 MetricGroupDefinition is null

-15357 MetricGroupDefinition is not valid

-15401 ApplicationDefinition is null

-15402 ApplicationDefinition is not valid

-15451 ArmMetricDefinition is null

-15452 ArmMetricDefinition is not valid

-15501 ArmMetricDefinitionGroup is

 not valid

-15551 ArmTransactionWithMetricsDefinition

 is not valid

-15601 ArmTransactionWithMetricsDefinition

 is not valid

-15651 ArmMetricString string is too long

-15701 Internal Error, Arm40Token

 constructor array is null.

-15702 Internal Error, Arm40Token Invalid

 input array

-15703 Internal Error, Arm40Token Invalid

 Offset

-15704 Internal Error, Arm40Token length error

attribute

Attributes specify a condition for a

situation to monitor so it can provide an

appropriate alert. For example, you can

create situations that monitor for alerts

with a specific severity. When the

attribute alert values match the values

specified in situations, the managed

objects associated with the situations

change appearance, alerting you to

problems. Attributes are organized into

attribute groups.

attribute group

A set of related attributes that can be

combined in a data view or a situation.

When you open the view or start the

situation, data samples of the selected

attributes are retrieved. The data

samplings from an attribute group return

either a single row of data or multiple

rows. Each type of monitoring agent has a

set of attribute groups. The software

displays attributes groups in either a table

or chart view.

availability

The successful execution of a monitored

transaction over a specified period of

time.

client Represents an end user system that

accesses a particular application to

perform a transaction. The client is the

system that initiated the request (or

transaction).

client pattern

A method to define which clients to

monitor by host name or IP address and

to group them for reporting. Client

patterns define groupings (based on IP

and host name) of your end users (or

clients) by location, or functional unit.

You can use the client pattern to see how

your application is performing from your

customers’ perspective.

client time

The time it takes to process and display

the Web page on a browser.

composite aggregation algorithm

Used by the Transaction Reporter to track

composite applications.

condition

A condition consists of an attribute, an

operator (such as greater than or equal

to), and a value. A condition can be read

as If - system condition - compared to

- value - is true.

76 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

configuration

(1) The manner in which the hardware

and software of an information processing

system are organized and interconnected.

(2) The computers, devices, and programs

that make up a system, subsystem, or

network.

context

The means used to group the tracking

data as part of a transaction flow.

current status

Indicates that data was gathered in the

last 5 minutes.

data collector

The monitoring component that recorded

the transaction data.

Data Collector plug-in

A combination of a Transaction Tracking

API (Transaction Tracking Application

Programming Interface) and its

supporting files which, when installed on

a domain, enables an application to

transmit tracking data to a Transaction

Collector.

data interval

A time period in minutes for the

summary data record

down time

See also mean time to recovery.

edge

 The point when the software first detects

the transaction.

event A significant occurrence to a task or

system that can be detected by a

situation. Events include completion or

failure of an operation, a user action, or

the change in state of a process. The event

causes the situation to become true and

generates an alert.

failure

An individual instance of a transaction

that did not complete correctly. See also

incident.

horizontal

Associating tracking data between

applications in a domain.

horizontal context

Identifies a transaction flow within a

transaction and is used to group

interactions based on the application

supplying the tracking data.

host A computer that is connected to a

network (such as the Internet or an SNA

network) and provides an access point to

that network. Also, depending on the

environment, the host can provide

centralized control of the network. The

host can be a client, a server, or both a

client and a server simultaneously.

HTTP response codes

Monitors for the receipt of the specified

HTTP response codes. When a threshold

has an HTTP response code transaction

status, the software notifies you when the

specified response codes are received

from the Web server during monitoring.

 400 Bad Request This is a common response code that is generated when a URL is not

found. This occurs when a server cannot be contacted or the resource

does not exist. For example, if the Web server hosting www.google.com

is down for service or a component upgrade and a user tries to view it,

the user sees a 404 response. Often, a 404 response is presented in a

user-friendly way by the Web browser. Microsoft Internet Explorer, for

example, presents a special error page for a 404 response.

401 Unauthorization 410 Gone

402 Payment Required 411 Length Required

403 Forbidden 412 Precondition Failed

404 Not Found 413 Request Entity Too Large

405 Bad Method 414 Request-URI Too Long

406 None Acceptable 415 Unsupported Media Type

407 Proxy Authentication Required 416 Requested Range Not Satisfiable

408 Request Timeout 417 Expectation Failed

Glossary 77

409 Conflict

500 Internal Server Error A common response code generated when the server is unable to

service a request due to an internal server error. For example, the

following sequence of events might produce this error:

1. A developer writes and deploys an application on

http://tests.mySoftwareDesignTestCases.org.

2. The code on the accessed page divides by zero at some point,

causing an internal application error.

3. The server returns a 500 response when it recognizes this condition.

502 Bad Gateway 504 Gateway Timeout

503 Service Unavailable 505 HTTP Version Not Supported

HTTP transaction

A single HTTP request, such as clicking a

link, and an associated response, such as

displaying a page.

incident

A failure or set of consecutive failures

over a period of time without any

successful transactions. An incident

represents a period of time when the

service was unavailable, down, or not

functioning as expected.

instance

A single transaction or subtransaction.

instance algorithm

Used by the Transaction Reporter to track

composite applications.

interval

The number of seconds that have elapsed

between one sample and the next. A

sample is the data that the product

collects for the server.

load time

Time elapsed between the user’s request

and completion of the Web page

download.

linking

Tracking transactions within the same

domain or from collectors of the same

type.

managed system

A particular operating system, subsystem,

or application where a Tivoli Enterprise

Monitoring Agent is installed and

running.

Management Information Base (MIB)

(1) In the Simple Network Management

Protocol (SNMP), a database of objects

that can be queried or set by a network

management system. (2) A definition for

management information that specifies

the information available from a host or

gateway and the operations allowed.

mean time between failures (MTBF)

The average time in seconds between the

recovery of one incident and the

occurrence of the next one. This is also

known as uptime.

mean time to recovery (MTTR)

The average number of seconds between

an incident and service recovery; also

known as downtime.

metrics aggregation

Used by the Transaction Collector to

summarize tracking data using vertical

linking and stitching to associate items for

a particular transaction instance. Ensures

that all appropriate tracking data is

aggregated.

MIB See Management Information Base.

monitor

An entity that performs measurements to

collect data about performance,

availability, reliability, or other attributes

of applications or the systems on which

the applications rely. These measurements

can be compared to predefined

thresholds. If a threshold is exceeded,

administrators can be notified, or

predefined automated responses can be

performed.

monitoring schedule

A schedule that determines on which

days and at what times the monitors

collect data.

Navigator

The left pane of theTivoli Enterprise

78 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Portal window. The Navigator Physical

view shows your network enterprise as a

physical hierarchy of systems grouped by

platform. You can also create other views

to create logical hierarchies grouped as

you specify, such as by department or

function.

network time

Time spent transmitting all required data

through the network.

over time interval

The number of minutes the software

aggregates data before writing out a data

point.

pattern

Patterns group the data into manageable

pieces.

platform

The operating system the managed

system is using, such as OS/390 and

Linux. The Navigator physical mapping

places the platform level under the

enterprise level.

probe A schedule that determines on which

days and at what times the monitors

collect data.

profile element

An element or monitoring task belonging

to a user profile. The element defines

what is to be monitored and when.

query A combination of statements used to

search a repository for systems that meet

certain criteria. The query object is created

in a query library.

realm A password-protected area of a Web site.

request

See transaction.

response time

Time elapsed between the user’s request

and the completion of the transaction.

round-trip response time

The time it takes to complete the entire

page request. Round-trip time includes

server time, client, and network and data

transfer time.

robotic scripts

Are recordings of typical customer

transactions that collect performance data.

The performance data helps determine

whether a transaction is performing as

expected and exposes problem areas of

the Web and application environment.

Robotic scripts include: CLI Playback,

Rational Robot GUI or VU, Mercury

LoadRunner, Rational Performance Tester

(RPT).

SAF See Store and Forward.

schedule

Determines how frequently a situation

runs with user-defined start times, stop

times, and parameters.

SDK Software Development Kit.

server Represents the physical system that is

running the application process. It is the

system that processed the request

(transaction).

server time

The time it takes for a Web server to

receive a requested transaction, process it,

and respond to it.

service

A set of business processes (such as Web

transactions) that represent business

critical functions that are made available

over the internet.

service level agreement (SLA)

A contract between a customer and a

service provider that specifies

expectations about the level of service,

particularly availability, performance, and

other measurable objectives.

service level classifications

Rules that are used by monitors to

evaluate how well a monitored service is

performing. The results form the basis for

service level agreements. See also service

level agreement.

service recovery

The time it takes for the service to recover

from being in a failed state.

situation

A set of conditions that, when met,

creates an event. An example of a

situation is: IF - CPU usage - > - 90% -

TRUE. The expression CPU usage > 90% is

the situation condition.

SLA See service level agreement.

status Describes the state of a transaction at a

particular point in time, such as whether

it failed, was successful, or slow.

Glossary 79

stitching

Tracking transactions between domains or

from different types of collectors.

Store and Forward (SAF)

A file that stores all information if the

system is unavailable to forward the

information. As soon as the system is

available again, the information in the

SAF file is processed and forwarded to

the appropriate system.

subtransaction

An individual step (such as a single page

request or logging on to a Web

application) in the overall recorded

transaction. See transaction. When a

transaction is considered together with its

subtransactions, it is called a parent

transaction. The subtransactions are

children of the parent transaction.

summary data

Display details about the response times

and volume history, as well as total times

and counts of successful transactions for

the whole application.

summary interval

The number of hours data is stored on the

agent for display in the Tivoli Data

Warehouse workspaces.

summary status

An amount of time (default is 8 hours) to

collect data on the Tivoli Enterprise

Monitoring Agent

Tivoli Data Warehouse

Stores historical data collected from

agents in your environment. The data

warehouse is located on a DB2, Oracle, or

Microsoft SQL database. To collect

information to store in this database, you

must install the Warehouse Proxy agent.

To perform aggregation and pruning

functions on the data, install the

Warehouse Summarization and Pruning

agent.

Tivoli Enterprise Console (TEC)

Synchronizes the status of situation events

that are forwarded to the event server.

When the status of an event is updated

because of Tivoli Enterprise Console rules

or operator actions, the update is sent to

the monitoring server, and the updated

status is reflected in both the Situation

Event Console and the Tivoli Enterprise

Console event viewer.

Tivoli Enterprise Monitoring Agent (TEMA)

This is a product-specific agent providing

data for IBM Tivoli Monitoring. The

monitoring agents are installed on the

systems or subsystems you want to

monitor. These monitoring agents collect

and distribute data to a monitoring

server.

Tivoli Enterprise Monitoring Server (TEMS)

This is the host data management

component for IBM Tivoli Monitoring. It

acts as a collection and control point for

alerts received from the agents, and

collects their performance and availability

data. There are two types of monitoring

servers: hub and remote.

Tivoli Enterprise Portal (TEP or portal)

A Java-based user interface for viewing

and monitoring the enterprise. It provides

two modes of operation: desktop and

browser.

thresholds

Customizable values for defining the

acceptable tolerance limits (maximum,

minimum, or reference limit) for a

transaction. When the measured value of

the resource is greater than the maximum

value, less than the minimum value, or

equal to the reference value, the software

records an incident.

tracking data

Information emitted by composite

applications when a transaction instance

occurs.

Tracking Data Store

Stores tracking data provided by the Data

Collector plug-in.

transaction

An exchange that accomplishes a

particular action or result. A transaction

can occur between a workstation and a

program, two workstations, or two

programs. A recorded transaction consists

of one or more subtransactions. When a

transaction is considered together with its

subtransactions, it is called a parent

transaction. The subtransactions are

children of the parent transaction.

80 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

transaction flow

The common path through a composite

application taken by similar transaction

instances.

transaction instance

Interactions between composite

applications in response to an external

stimuus such as a request.

transaction pattern

The pattern for specifying the name of

specific transactions that you want to

monitor. Patterns define groupings of

transactions that map to business

applications and business transactions.

Transaction Collector

Stores the tracking data from multiple

Data Collector plug-ins and computes

aggregates. Also called TTAS monitoring

agent.

Transaction Reporter

Stores the aggregated data from the

Transaction Collector and sends this data

to the Tivoli Enterprise Portal workspaces.

Transaction Tracking API (Transaction Tracking

Application Programming Interface or TTAPI)

Installed on supported domains, the

Transaction Tracking API enables an

application to transmit tracking data to a

Transaction Collector.

Transactions Base

Component of ITCAM for Transaction

Tracking for z/OS consisting of the

Transactions Container and Transactions

Dispatcher.

Transactions Container

z/OS started task (STC) that provides

basic functionality for ITCAM for

Transaction Tracking.

Transactions Dispatcher

Code that processes event queues on

z/OS within the Transactions Container

and sends events to the Transaction

Collector on Windows or UNIX.

Transactions MQ Container

z/OS started task (STC) that provides

basic functionality for MQ events.

Transactions MQ Courier

Code that processes event queues on

z/OS and sends events to the Transaction

Collector on Windows or UNIX.

Transactions MQ Dispatcher

Code that runs within the Transactions

MQ Container and provides an operator

command interface.

Transactions MQ Exits

MQ exit code that creates events for MQ

and sends these events to the Transactions

MQ Dispatcher using the Transaction

Tracking API.

Transactions TEMA

See Transaction Reporter.

TTAS TEMA

See Transaction Collector.

trend Data graphed over time to show a general

tendency in timings or attributes.

UNIX epoch

00:00:00 UTC, January 1, 1970.

uptime

See Mean Time Between Failure.

URL Universal Resource Locator. The unique

address for a file accessible through the

Internet. Such a file might be a Web page

(usually the home page), an image file, or

a program such as a Java applet or

servlet. The URL comprises the protocol

used to access the file, a domain name

that identifies a specific computer on the

Internet, and a path name that specifies

that file’s location on that computer.

user profile (ISM)

An entity such as a department or

customer for whom services are being

performed.

vertical

Associating individual tracking data

within an application within a domain.

vertical context

Used within an application or group of

applications to distinguish one transaction

flow from another. The vertical context

enables Transaction Tracking to group

individual transactions as part of a flow,

label a node in a topology map, and link

to an IBM® Tivoli Monitoring application.

view A logical table that consists of data

generated by a query. A view is based on

an underlying set of base tables, and the

data in a view is determined by a

SELECT statement that is run on the base

tables.

Glossary 81

volume

The number of requests.

workspace

The viewing area of the Tivoli Enterprise

Portal window, excluding the Navigator.

 Workspaces contain the table views to

obtain information about, manage, and

utilize log files more effectively. The table

views and graphs in each workspace

report attribute information you are

monitoring. You can use them to perform

the following tasks:

v Investigate attribute information

relating to a change in state

v Monitor system performance to identify

bottlenecks and to evaluate tuning

decisions

v Select the most effective threshold

values for situations you create

A workspace also might contain other

views, such as a notepad pane, a browser

session, an event console, or a take action

pane that provides the ability to send

commands to the operator console.

82 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

Index

A
accessibility 69

aggregation 18

Application context 19

applications, instrumenting 13

association IDs 15

B
binding on z/OS 8

blocking events 21

example 21

books, see publications ix, x

C
compiling 8

Component context 19

contextual information 19

conventions, typeface xi

creating events 7

CYTADFV 35

CYTAINIT 37

CYTANV 38

CYTATOK 39

CYTATRAK 40

D
data types 27

debugging errors 10

detecting errors 10

directory names, notation xii

E
environment variables 10

environment variables, notation xii

environment, preparing to install 5

errors
debugging 10

handling 10

logging 10

event data structures 27

events
blocking 21

blocking, example 21

characteristics 13

context 19

correlation 18

creating and sending 7

invalid 10

types 14

workspaces 19

z/OS 22

example
blocking events 21

executing 8

F
FINISHED event type 14

functions, high level language 23

H
HERE event type 14

high level language
functions 23

reference 23

HLASM 35

horizontal linking 15

Host context 19

I
identifiers

instance 18

uniqueness 15

INBOUND event type 14

INBOUND_FINISHED event type 14

include files 8

instrumenting
applications 13

synchronous transactions 15

introduction 1

J
Java API reference 33

Javadoc for TTAPI4J 33

K
KBB_RAS1 environment variable 10

KBB_RAS1_LOG environment

variable 10

KBB_VARPREFIX environment

variable 10

L
languages, supported 3

linking IDs 15

linking on distributed platforms 8

logging
environment variables 10

errors 10

M
manuals, see publications ix, x

N
notation

environment variables xii

notation (continued)
path names xii

typeface xii

O
online publications, accessing x

ordering publications x

OUTBOUND event type 14

OUTBOUND_FINISHED event type 14

P
path names, notation xii

platforms, supported 3

preparing environment 5

program requirements 8

publications ix

accessing online x

ordering x

R
reference, high level language 23

running Transaction Tracking API 8

S
sample

CYTADFV 35

CYTAINIT 37

CYTANV 38

CYTATOK 39

CYTATRAK 40

sending events 7

shutting down Transaction Tracking

API 7

STARTED event type 14

STARTED_INBOUND event type 14

stitching IDs 15

support xi

supported
languages 3

platforms 3

synchronous transactions 21

T
Tivoli software information center x

transaction
data 18

ID 18

synchronous 15, 21

Transaction context 19

tt_association_id_t data structure 27

tt_event_type_t data structure 27

tt_instance_id_t data structure 27

tt_time_t data structure 27

tt_values_list_t data structure 27

© Copyright IBM Corp. 2008 83

TTAPI4J 33

typeface conventions xi

V
variables, notation for xii

vertical stitching 15

Z
z/OS

binding 8

event data 22

84 IBM Tivoli Composite Application Manager for Transactions: Transaction Tracking API User’s Guide

����

Printed in USA

SC23-9755-00

	Contents
	Figures
	Tables
	About this publication
	Publications
	Documentation library
	Prerequisite publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this guide
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Introduction
	Chapter 2. Before you start
	Chapter 3. Preparing your environment
	Chapter 4. Getting started
	Introduction
	Program requirements and include files
	Compiling, linking, and executing with Transaction Tracking API
	Error handling
	Error logging and debugging

	Chapter 5. How to build an event
	Event types
	Event type examples

	Linking and stitching
	Transaction Instance IDs
	Context information
	Blocking events
	Example: blocking events

	Platform specific issues

	Chapter 6. High Level Language reference
	Functions
	C types and structures

	Chapter 7. Java reference
	Chapter 8. High Level Assembler Reference
	HLASM Macro: CYTADFV
	HLASM Macro: CYTAINIT
	HLASM Macro: CYTANV
	HLASM Macro: CYTATOK
	HLASM Macro: CYTATRAK

	Appendix A. Transport address format
	Appendix B. Return codes
	Appendix C. Samples
	Appendix D. kto_stitching file
	Appendix E. Transaction Collector Context Mask
	Appendix F. Accessibility
	Notices
	Trademarks

	Glossary
	Index

